Well-posedness of linear singular evolution equations in Banach spaces: theoretical results

被引:0
|
作者
M. C. Bortolan [1 ]
M. C. A. Brito [1 ]
F. Dantas [2 ]
机构
[1] Universidade Federal de Santa Catarina (UFSC),Departamento de Matemática, Centro de Ciências Físicas e Matemáticas
[2] Universidade Federal de Sergipe,Departamento de Matemática
关键词
singular problem; degenerated problem; well-posedness; generalized semigroup; generator; primary 47D03; 34A12; secondary 47D06; 47D62;
D O I
10.1007/s10476-025-00067-8
中图分类号
学科分类号
摘要
In this work we deal with a singular evolution equation of the form Eu˙=Au,t>0,u(0)=u0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{cases}E\dot{u} = Au, &t>0,\\ u(0)=u_0,\end{cases}$$\end{document} where both A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} are linear operators, with E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} bounded but not necessarily injective, defined in adequate subspaces of a given Banach space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}. By using the concept of generalized semigroups, our goal is to prove a Hille-Yosida type theorem for this problem, that is, to find necessary and sufficient conditions under which A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is the generator of a generalized semigroup {U(t):t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{U(t) : t \geq 0\}$$\end{document}. This problem is dealt with by making use of the E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-spectral theory and the concept of generalized integrable families. Finally, we present an abstract example that illustrates the theory.
引用
收藏
页码:99 / 128
页数:29
相关论文
共 50 条