Well-posedness of linear singular evolution equations in Banach spaces: theoretical results

被引:0
|
作者
M. C. Bortolan [1 ]
M. C. A. Brito [1 ]
F. Dantas [2 ]
机构
[1] Universidade Federal de Santa Catarina (UFSC),Departamento de Matemática, Centro de Ciências Físicas e Matemáticas
[2] Universidade Federal de Sergipe,Departamento de Matemática
关键词
singular problem; degenerated problem; well-posedness; generalized semigroup; generator; primary 47D03; 34A12; secondary 47D06; 47D62;
D O I
10.1007/s10476-025-00067-8
中图分类号
学科分类号
摘要
In this work we deal with a singular evolution equation of the form Eu˙=Au,t>0,u(0)=u0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{cases}E\dot{u} = Au, &t>0,\\ u(0)=u_0,\end{cases}$$\end{document} where both A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} and E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} are linear operators, with E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} bounded but not necessarily injective, defined in adequate subspaces of a given Banach space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}. By using the concept of generalized semigroups, our goal is to prove a Hille-Yosida type theorem for this problem, that is, to find necessary and sufficient conditions under which A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} is the generator of a generalized semigroup {U(t):t≥0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{U(t) : t \geq 0\}$$\end{document}. This problem is dealt with by making use of the E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-spectral theory and the concept of generalized integrable families. Finally, we present an abstract example that illustrates the theory.
引用
收藏
页码:99 / 128
页数:29
相关论文
共 50 条
  • [21] Well-Posedness of Third Order Degenerate Differential Equations with Finite Delay in Banach Spaces
    Bu, Shangquan
    Cai, Gang
    RESULTS IN MATHEMATICS, 2021, 76 (02)
  • [22] WELL-POSEDNESS RESULTS FOR FRACTIONAL SEMI-LINEAR WAVE EQUATIONS
    Djida, Jean-Daniel
    Fernandez, Arran
    Area, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 569 - 597
  • [23] ON EQUIVALENCE RESULTS FOR WELL-POSEDNESS OF MIXED HEMIVARIATIONAL-LIKE INEQUALITIES IN BANACH SPACES
    Ceng, Lu-Chuan
    Yao, Jen-Chih
    Yao, Yonghong
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (06): : 40 - 54
  • [24] LOCAL WELL-POSEDNESS FOR A CLASS OF SINGULAR VLASOV EQUATIONS
    Chaub, Thomas
    KINETIC AND RELATED MODELS, 2023, 16 (02) : 187 - 206
  • [25] GENERIC WELL-POSEDNESS FOR PERTURBED OPTIMIZATION PROBLEMS IN BANACH SPACES
    Peng, L. H.
    Li, C.
    Yao, J. C.
    TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (04): : 1351 - 1369
  • [26] Well-posedness by perturbations of mixed variational inequalities in Banach spaces
    Fang, Ya-Ping
    Huang, Nan-Jing
    Yao, Jen-Chih
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 201 (03) : 682 - 692
  • [27] Well-posedness of a class of perturbed optimization problems in Banach spaces
    Peng, Li-Hui
    Li, Chong
    Yao, Jen-Chih
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (02) : 384 - 394
  • [28] Feedback theory to the well-posedness of evolution equations
    Boulite, S.
    Hadd, S.
    Maniar, L.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2185):
  • [29] Well-posedness for some damped elastic systems in Banach spaces
    Diagana, Toka
    APPLIED MATHEMATICS LETTERS, 2017, 71 : 74 - 80
  • [30] WELL-POSEDNESS OF GENERALIZED PERTURBED OPTIMIZATION PROBLEMS IN BANACH SPACES
    Ye, Mingwu
    Peng, Lihui
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 771 - 786