Local well-posedness for incompressible neo-Hookean elastic equations in almost critical Sobolev spaces

被引:0
|
作者
Zhang, Huali [1 ]
机构
[1] Hunan Univ, Sch Math, Lushan South Rd Yuelu Dist, Changsha 410882, Peoples R China
基金
中国国家自然科学基金;
关键词
Primary; 35Q35; 35R05; NONLINEAR-WAVE EQUATIONS; NULL FORMS; REGULARITY; EXISTENCE; EULER;
D O I
10.1007/s00526-024-02681-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by a pioneer work of Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023), we prove the local well-posedness of the Cauchy problem of incompressible neo-Hookean equations if the initial deformation and velocity belong to Hn+22+(Rn)xHn2+(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{\frac{n+2}{2}+}({\mathbb {R}}<^>n) \times H<^>{\frac{n}{2}+}({\mathbb {R}}<^>n)$$\end{document} (n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document}), where n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n+2}{2}$$\end{document} and n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document} is respectively a scaling-invariant exponent for deformation and velocity in Sobolev spaces. Our new observation relies on two folds: a reduction to a second-order wave-elliptic system of deformation and velocity; and a "wave-map type" null form intrinsic in this coupled system. In particular, the wave nature with "wave-map type" null form allows us to prove a bilinear estimate of Klainerman-Machedon type for nonlinear terms. So we can lower 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}-order regularity in 3D and 34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{4}$$\end{document}-order regularity in 2D for well-posedness compared with Andersson and Kapitanski (Arch Ration Mech Anal 247(2):Paper No. 21, 76 pp, 2023).
引用
收藏
页数:20
相关论文
共 50 条