Finding Misclassified Natura 2000 Habitats by Applying Outlier Detection to Sentinel-1 and Sentinel-2 Data

被引:0
|
作者
Moravec, David [1 ]
Bartak, Vojtech [1 ]
Simova, Petra [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Spatial Sci, Kamycka 129, Prague 16500, Czech Republic
关键词
Sentinel-1; Sentinel-2; change detection; RADAR; multispectral; nature conservation; BACKSCATTERING COEFFICIENT; SOIL-MOISTURE; BIOMASS; IMAGES; NARROW;
D O I
10.3390/rs15184409
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The monitoring of Natura 2000 habitats (Habitat Directive 92/43/EEC) is a key activity ensuring the sufficient protection of European biodiversity. Reporting on the status of Natura 2000 habitats is required every 6 years. Although field mapping is still an indispensable source of data on the status of Natura 2000 habitats, and very good field-based data exist in some countries, keeping the field-based habitat maps up to date can be an issue. Remote sensing techniques represent an excellent alternative. Here, we present a new method for detecting habitats that were likely misclassified during the field mapping or that have changed since then. The method identifies the possible habitat mapping errors as the so-called "attribute outliers", i.e., outlying observations in the feature space of all relevant (spectral and other) characteristics of an individual habitat patch. We used the Czech Natura 2000 Habitat Layer as field-based habitat data. To prepare the feature space of habitat characteristics, we used a fusion of Sentinel-1 and Sentinel-2 satellite data along with a Digital Elevation Model. We compared outlier ratings using the robust Mahalanobis distance and Local Outlier Factor using three different thresholds (Tukey rule, histogram-based Scott's rule, and 95% quantiles in & chi;2 distribution). The Mahalanobis distance thresholded by the 95% & chi;2 quantile achieved the best results, and, because of its high specificity, appeared as a promising tool for identifying erroneously mapped or changed habitats. The presented method can, therefore, be used as a guide to target field updates of Natura 2000 habitat maps or for other habitat/land cover mapping activities where the detection of misclassifications or changes is needed.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [22] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Binita Shrestha
    Sajjad Ahmad
    Haroon Stephen
    Environmental Monitoring and Assessment, 2021, 193
  • [23] ON THE FUSION STRATEGIES OF SENTINEL-1 AND SENTINEL-2 DATA FOR LOCAL CLIMATE ZONE CLASSIFICATION
    Gawlikowski, Jakob
    Schmitt, Michael
    Kruspe, Anna
    Zhu, Xiao Xiang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2081 - 2084
  • [24] SEASONAL FOREST DISTURBANCE DETECTION USING SENTINEL-1 SAR & SENTINEL-2 OPTICAL TIMESERIES DATA AND TRANSFORMERS
    Mullissa, Adugna
    Reiche, Johannes
    Saatchi, Sassan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3122 - 3124
  • [25] Data integration of Sentinel-1 and Sentinel-2 for evaluating vegetation biomass and water status
    Pilia, S.
    Fontanelli, G.
    Santurri, L.
    Ramat, G.
    Baroni, F.
    Santi, E.
    Lapini, A.
    Pettinato, S.
    Paloscia, S.
    PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, : 694 - 698
  • [26] MAPPING PLANT COMMUNITIES IN THE INTERTIDAL ZONES USING SENTINEL-2 AND SENTINEL-1 DATA
    Wang, Tiejun
    Luo, Yansha
    Sun, Yiwen
    Liu, Xinhui
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8381 - 8384
  • [27] CROP-IDENTIFICATION USING SENTINEL-1 AND SENTINEL-2 DATA FOR INDIAN REGION
    Singh, Jitendra
    Devi, Umamaheswari
    Hazra, Jagabondhu
    Kalyanaraman, Shivkumar
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5312 - 5314
  • [28] Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards
    Chakhar, Amal
    Hernandez-Lopez, David
    Ballesteros, Rocio
    Moreno, Miguel A.
    REMOTE SENSING, 2024, 16 (03)
  • [29] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [30] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,