Irrigation Detection Using Sentinel-1 and Sentinel-2 Time Series on Fruit Tree Orchards

被引:1
|
作者
Chakhar, Amal [1 ]
Hernandez-Lopez, David [1 ]
Ballesteros, Rocio [1 ]
Moreno, Miguel A. [1 ]
机构
[1] Univ Castilla La Mancha, Inst Reg Dev, Albacete 02071, Spain
关键词
Sentinel-1; Sentinel-2; irrigation detection; Sentinel hub; classification; SVM; fruit tree orchards; NDVI; VV; VH; CROP CLASSIFICATION; LANDSAT-8; DATA; RESOLUTION; MODEL; ALGORITHMS; CHALLENGES; ROUGHNESS; MOISTURE; YIELD;
D O I
10.3390/rs16030458
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In arid and semi-arid regions, irrigation is crucial to mitigate water stress and yield loss. However, the overexploitation of water resources by the agricultural sector together with the climate change effects can lead to water scarcity. Effective regional water management depends on estimating irrigation demand using maps of irrigable areas or national and regional statistics of irrigated areas. These statistical data are not always of reliable quality because they generally do not reflect the updated spatial distribution of irrigated and rainfed fields. In this context, remote sensing provides reliable methods for gathering useful agricultural information from derived records. The combined use of optical and radar Earth Observation data enhances the probability of detecting irrigation events, which can improve the accuracy of irrigation mapping. Hence, we aimed to utilize Sentinel-1 (VV and VH) and Sentinel-2 (NDVI) data to classify irrigated fruit trees and rainfed ones in a study area located in the Castilla La-Mancha region in Spain. To obtain these time-series data from Sentinel-1 and Sentinel-2, which constitute the input data for the classification algorithms, a tool has been developed for automating the download from the Sentinel Hub. This tool downloads products organized by tiles for the region of interest and for the entire required time-series, ensuring the spatial repeatability of each pixel across all products and dates. The classification of irrigated plots was carried out by SVM Support Vector Machine. The employed methodology displayed promising results, with an overall accuracy of 88.4%, indicating the methodology's ability to detect irrigation over orchards that were declared as non-irrigated. These results were evaluated by applying the change detection method of the sigma p0 backscattering coefficient at plot scale.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [2] Detection of Irrigated and Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series
    Pageot, Yann
    Baup, Frederic
    Inglada, Jordi
    Baghdadi, Nicolas
    Demarez, Valerie
    [J]. REMOTE SENSING, 2020, 12 (18)
  • [3] Mowing detection using Sentinel-1 and Sentinel-2 time series for large scale grassland monitoring
    De Vroey, Mathilde
    de Vendictis, Laura
    Zavagli, Massimo
    Bontemps, Sophie
    Heymans, Diane
    Radoux, Julien
    Koetz, Benjamin
    Defourny, Pierre
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 280
  • [4] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [5] Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series
    Reinermann, Sophie
    Gessner, Ursula
    Asam, Sarah
    Ullmann, Tobias
    Schucknecht, Anne
    Kuenzer, Claudia
    [J]. REMOTE SENSING, 2022, 14 (07)
  • [6] Crop Detection Using Time Series of Sentinel-2 and Sentinel-1 and Existing Land Parcel Information Systems
    Snevajs, Herman
    Charvat, Karel
    Onckelet, Vincent
    Kvapil, Jiri
    Zadrazil, Frantisek
    Kubickova, Hana
    Seidlova, Jana
    Batrlova, Iva
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [7] IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Ienco, Dino
    Zribi, Mehrez
    Belhouchette, Hatem
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4711 - 4714
  • [8] IRRIGATION MAPPING USING STATISTICS OF SENTINEL-1 TIME SERIES
    Gao, Q.
    Zribi, M.
    Escorihuela, M. J.
    Baghdadi, N.
    Quintana-Segui, P.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 112 - 115
  • [9] FIELD SCALE SOIL MOISTURE FROM TIME SERIES OF SENTINEL-1 & SENTINEL-2
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Palmisano, Davide
    D'Addabbo, Annarita
    Lovergine, Francesco
    [J]. 2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 176 - 179
  • [10] National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series
    Frantz, David
    Schug, Franz
    Okujeni, Akpona
    Navacchi, Claudio
    Wagner, Wolfgang
    van der Linden, Sebastian
    Hostert, Patrick
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 252