CROP-IDENTIFICATION USING SENTINEL-1 AND SENTINEL-2 DATA FOR INDIAN REGION

被引:0
|
作者
Singh, Jitendra [1 ]
Devi, Umamaheswari [1 ]
Hazra, Jagabondhu [1 ]
Kalyanaraman, Shivkumar [1 ]
机构
[1] IBM Res India, New Delhi, India
关键词
Crop Identification; Synthetic Aperture Radar; Normalized Difference Vegetation Index; Random Forest;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time monitoring of agricultural crops is an important exercise because of the huge economic impact. Identification of crop during early stage of the crop cycle can help formulate better agriculture policies and management strategies. In this context, the objective of this article is to evaluate the potential of Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 optical imagery in crop identification for an Indian region. A multi-class classification algorithm based on random forest is applied to the features extracted from the above mentioned satellite data sets. Initial experimental suggest that the Sentinel-1 SAR data is promising in achieving high classification accuracy (85%).
引用
收藏
页码:5312 / 5314
页数:3
相关论文
共 50 条
  • [1] ASSESSMENT OF SENTINEL-1 AND SENTINEL-2 SATELLITE IMAGERY FOR CROP CLASSIFICATION IN INDIAN REGION DURING KHARIF AND RABI CROP CYCLES
    Singh, Jitendra
    Mahapatra, Aniruddha
    Basu, Saurav
    Banerjee, Biplab
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3720 - 3723
  • [2] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    [J]. SCIENCE OF REMOTE SENSING, 2021, 3
  • [3] Assessment of Sentinel-1 and Sentinel-2 Data for Landslides Identification using Google Earth Engine
    Nugroho, Ferman Setia
    Danoedoro, Projo
    Arjasakusuma, Sanjiwana
    Candra, Danang Surya
    Bayanuddin, Athar Abdurrahman
    Samodra, Guruh
    [J]. 2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,
  • [4] Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery
    Notarnicola, C.
    Asam, S.
    Jacob, A.
    Marin, C.
    Rossi, M.
    Stendardi, L.
    [J]. 2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [5] ANALYSING FLOOD AFFECTED REGION IN MERIC RIVER BASIN USING SENTINEL-1 AND SENTINEL-2 DATA
    Senel, Gizem
    Eroglu, Mehmet
    Balcik, Filiz Bektas
    Goksel, Cigdem
    [J]. 8TH INTERNATIONAL CONFERENCE ON CARTOGRAPHY AND GIS, VOL. 1, 2020, : 710 - 716
  • [6] EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
    Jung, Jungkyo
    Yun, Sang-Ho
    Xu, Jeri
    Xie, Boyi
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6875 - 6878
  • [7] WETLAND CLASSIFICATION WITH SWIN TRANSFORMER USING SENTINEL-1 AND SENTINEL-2 DATA
    Jamali, Ali
    Mohammadimanesh, Fariba
    Mahdianpari, Masoud
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6213 - 6216
  • [8] Monitoring Irrigation Events and Crop Dynamics Using Sentinel-1 and Sentinel-2 Time Series
    Ma, Chunfeng
    Johansen, Kasper
    McCabe, Matthew F.
    [J]. REMOTE SENSING, 2022, 14 (05)
  • [9] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    [J]. Environmental Monitoring and Assessment, 2024, 196
  • [10] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)