Revisiting Fully Convolutional Geometric Features for Object 6D Pose Estimation

被引:0
|
作者
Corsetti, Jaime [1 ]
Boscaini, Davide [1 ]
Poiesi, Fabio [1 ]
机构
[1] Fdn Bruno Kessler, Povo, Italy
关键词
D O I
10.1109/ICCVW60793.2023.00224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent works on 6D object pose estimation focus on learning keypoint correspondences between images and object models, and then determine the object pose through RANSAC-based algorithms or by directly regressing the pose with end-to-end optimisations. We argue that learning point-level discriminative features is overlooked in the literature. To this end, we revisit Fully Convolutional Geometric Features (FCGF) and tailor it for object 6D pose estimation to achieve state-of-the-art performance. FCGF employs sparse convolutions and learns point-level features using a fully-convolutional network by optimising a hardest contrastive loss. We can outperform recent competitors on popular benchmarks by adopting key modifications to the loss and to the input data representations, by carefully tuning the training strategies, and by employing data augmentations suitable for the underlying problem. We carry out a thorough ablation to study the contribution of each modification. The code is available at https://github.com/jcorsetti/FCGF6D.
引用
收藏
页码:2095 / 2104
页数:10
相关论文
共 50 条
  • [1] 6D Object Pose Estimation with Pairwise Compatible Geometric Features
    Lin, Muyuan
    Murali, Varun
    Karaman, Sertac
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 10966 - 10973
  • [2] ConvPoseCNN: Dense Convolutional 6D Object Pose Estimation
    Capellen, Catherine
    Schwarz, Max
    Behnke, Sven
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 162 - 172
  • [3] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [4] Learning stereopsis from geometric synthesis for 6D object pose estimation
    State Key Laboratory of Industrial Control Technology and Institue of Cyber-Systems and Control, Zhejiang University, Zhejiang, China
    [J]. arXiv, 1600,
  • [5] Robust 6D Object Pose Estimation by Learning RGB-D Features
    Tian, Meng
    Pan, Liang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6218 - 6224
  • [6] PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
    Xiang, Yu
    Schmidt, Tanner
    Narayanan, Venkatraman
    Fox, Dieter
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [7] GeoPose: Dense Reconstruction Guided 6D Object Pose Estimation With Geometric Consistency
    Wang, Deming
    Zhou, Guangliang
    Yan, Yi
    Chen, Huiyi
    Chen, Qijun
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4394 - 4408
  • [8] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35
  • [9] Single Shot 6D Object Pose Estimation
    Kleeberger, Kilian
    Huber, Marco F.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 6239 - 6245
  • [10] Survey on 6D Pose Estimation of Rigid Object
    Chen, Jiale
    Zhang, Lijun
    Liu, Yi
    Xu, Chi
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7440 - 7445