Overfullness of edge-critical graphs with small minimal core degree

被引:0
|
作者
Cao, Yan [1 ]
Chen, Guantao [2 ]
Jing, Guangming [3 ,5 ]
Shan, Songling [4 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Liaoning, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA USA
[3] West Virginia Univ, Sch Math & Data Sci, Morgantown, WV USA
[4] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[5] West Virginia Univ, Sch Math & Data Sci, Morgantown, WV 26506 USA
关键词
extended Vizing fan shifting; overfull conjecture; Vizing fan;
D O I
10.1002/jgt.23069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. Let G Delta(G) and chi G '() be the maximum degree and the chromatic index of G, respectively. We call G overfull if EGVG()() 2//G>Delta(), andcriticalif chi H chi G '()<'()for every propersubgraphHofG. Clearly, ifGis overfull then chi G G '()=Delta()+1. Thecore of G, denoted byG Delta,isthe subgraph of G induced by all its maximum degree vertices. We believe that utilizing the core degree condition could be considered as an approach to attack the overfull conjecture. Along this direction, we in this paper show that for any integer k2 >=, if G is critical with G n Delta()+k2332 >= and delta Gk()Delta <=, then G is overfull.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 50 条
  • [31] Edge-Critical &ITG&IT, &ITH&IT Colorings
    Tennenhouse, Craig
    ARS COMBINATORIA, 2018, 138 : 403 - 413
  • [32] SMALL GRAPHS CRITICAL WITH RESPECT TO EDGE COLORINGS
    BEINEKE, LW
    FIORINI, S
    DISCRETE MATHEMATICS, 1976, 16 (02) : 109 - 121
  • [33] The Size of Edge Chromatic Critical Graphs with Maximum Degree 6
    Luo, Rong
    Miao, Lianying
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2009, 60 (02) : 149 - 171
  • [34] Injective edge-coloring of graphs with small maximum degree
    Huang, Danjun
    Guo, Yuqian
    arXiv,
  • [35] On the size of edge-coloring critical graphs with maximum degree 4
    Miao, Lianying
    Pang, Shiyou
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5856 - 5859
  • [36] Small independent edge dominating sets in graphs of maximum degree three
    Zwoiniak, GY
    SOFSEM 2006: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS, 2006, 3831 : 556 - 564
  • [37] Edge Rupture Degree of Graphs
    Li, Yinkui
    Du, Mingzhe
    Li, Hongyan
    Wang, Xiaolin
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2017, 28 (08) : 993 - 1006
  • [38] MINIMAL K-SATURATED AND COLOR CRITICAL GRAPHS OF PRESCRIBED MINIMUM DEGREE
    DUFFUS, DA
    HANSON, D
    JOURNAL OF GRAPH THEORY, 1986, 10 (01) : 55 - 67
  • [39] Minimum degree of minimal (n-10)-factor-critical graphs
    Guo, Jing
    Zhang, Heping
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [40] Minimal unavoidable sets of cycles in plane graphs with restricted minimum degree and edge weight
    Madaras, Tomas
    Tamasova, Martina
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 240 - 252