Minimum degree of minimal (n-10)-factor-critical graphs

被引:1
|
作者
Guo, Jing [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Perfect matching; Minimal k -factor-critical graph; Minimum degree; VERTICES; CLOSURE;
D O I
10.1016/j.disc.2023.113839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G of order n is said to be k-factor-critical for integers 1 <= k < n, if the removal of any k vertices results in a graph with a perfect matching. A k-factor-critical graph G is called minimal if for any edge e is an element of E(G), G - e is not k-factor-critical. In 1998, O. Favaron and M. Shi conjectured that every minimal k-factor-critical graph of order n has minimum degree k + 1 and confirmed it for k =1, n - 2, n - 4 and n - 6. By using a novel approach, we have confirmed it for k = n - 8 in a previous paper. Continuing with this method, we confirm the conjecture when k = n -10 in this paper.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A MINIMUM DEGREE CONDITION FOR FRACTIONAL ID-[a, b]-FACTOR-CRITICAL GRAPHS
    Zhou, Sizhong
    Sun, Zhiren
    Liu, Hongxia
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (02) : 177 - 183
  • [2] Closure and factor-critical graphs
    Plummer, MD
    Saito, A
    DISCRETE MATHEMATICS, 2000, 215 (1-3) : 171 - 179
  • [3] Factor-critical graphs with the minimum number of near-perfect matchings
    Doslic, Tomislav
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2318 - 2319
  • [4] EQUIMATCHABLE FACTOR-CRITICAL GRAPHS
    FAVARON, O
    JOURNAL OF GRAPH THEORY, 1986, 10 (04) : 439 - 448
  • [5] A degree condition for graphs to be fractional ID-[a, b]-factor-critical
    Yashima, Takamasa
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 191 - 199
  • [6] On Cartesian Product of Factor-Critical Graphs
    Zefang Wu
    Xu Yang
    Qinglin Yu
    Graphs and Combinatorics, 2012, 28 : 723 - 736
  • [7] Strong product of factor-critical graphs
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2685 - 2696
  • [8] Strong product of factor-critical graphs
    Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China
    不详
    Int J Comput Math, 13 (2685-2696):
  • [9] A closure concept in factor-critical graphs
    Nishimura, T
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 319 - 324
  • [10] On Cartesian Product of Factor-Critical Graphs
    Wu, Zefang
    Yang, Xu
    Yu, Qinglin
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 723 - 736