Overfullness of edge-critical graphs with small minimal core degree

被引:0
|
作者
Cao, Yan [1 ]
Chen, Guantao [2 ]
Jing, Guangming [3 ,5 ]
Shan, Songling [4 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Liaoning, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA USA
[3] West Virginia Univ, Sch Math & Data Sci, Morgantown, WV USA
[4] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[5] West Virginia Univ, Sch Math & Data Sci, Morgantown, WV 26506 USA
关键词
extended Vizing fan shifting; overfull conjecture; Vizing fan;
D O I
10.1002/jgt.23069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph. Let G Delta(G) and chi G '() be the maximum degree and the chromatic index of G, respectively. We call G overfull if EGVG()() 2//G>Delta(), andcriticalif chi H chi G '()<'()for every propersubgraphHofG. Clearly, ifGis overfull then chi G G '()=Delta()+1. Thecore of G, denoted byG Delta,isthe subgraph of G induced by all its maximum degree vertices. We believe that utilizing the core degree condition could be considered as an approach to attack the overfull conjecture. Along this direction, we in this paper show that for any integer k2 >=, if G is critical with G n Delta()+k2332 >= and delta Gk()Delta <=, then G is overfull.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 50 条
  • [21] A Mobius-type gluing technique for obtaining edge-critical graphs
    Bonvicini, Simona
    Vietri, Andrea
    ARS MATHEMATICA CONTEMPORANEA, 2020, 19 (02) : 209 - 229
  • [22] Edge-critical isometric subgraphs of hypercubes
    Klavzar, S
    Lipovec, A
    ARS COMBINATORIA, 2004, 70 : 139 - 147
  • [23] On the average degree of edge chromatic critical graphs
    Cao, Yan
    Chen, Guantao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 147 : 299 - 338
  • [24] On the existence of k-partite or Kp-free total domination edge-critical graphs
    Haynes, Teresa W.
    Henning, Michael A.
    van der Merwe, Lucas C.
    Yeo, Anders
    DISCRETE MATHEMATICS, 2011, 311 (13) : 1142 - 1149
  • [25] The average degree of edge chromatic critical graphs with maximum degree seven
    Cao, Yan
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    arXiv, 2023,
  • [26] The average degree of edge chromatic critical graphs with maximum degree seven
    Cao, Yan
    Luo, Rong
    Miao, Zhengke
    Zhao, Yue
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 517 - 541
  • [27] Edge-coloring critical graphs with high degree
    Miao, LY
    Wu, JL
    DISCRETE MATHEMATICS, 2002, 257 (01) : 169 - 172
  • [28] On the average degree of edge chromatic critical graphs II
    Cao, Yan
    Chen, Guantao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 470 - 486
  • [29] MINIMAL RAMSEY GRAPHS WITH MANY VERTICES OF SMALL DEGREE
    Boyadzhiyska, Simona
    Clemens, Dennis
    Gupta, Pranshu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (03) : 1503 - 1528
  • [30] On the size of critical graphs with small maximum degree
    Miao, Lian-Ying
    Song, Wen-Yao
    Pang, Shi-You
    Miao, Zheng-Ke
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (10) : 2142 - 2151