Structure Regulation of Electric Double Layer via Hydrogen Bonding Effect to Realize High-Stability Lithium-Metal Batteries

被引:6
|
作者
Liu, Sheng [1 ]
Shu, Chaozhu [1 ]
Yan, Yu [1 ,2 ]
Du, Dayue [1 ,3 ]
Ren, Longfei [1 ]
Zeng, Ting [1 ]
Wen, Xiaojuan [1 ]
Xu, Haoyang [1 ]
Wang, Xinxiang [1 ]
Tian, Guilei [1 ]
Zeng, Ying [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, 1 Dongsanlu,Erxianqiao, Chengdu 610059, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
[3] Sichuan Univ, Polymer Res Inst, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
electric double layer; electrolyte additives; intermolecular hydrogen bonds; Li metal batteries; p-Hydroxybenzoic acid; ELECTROLYTE; PERFORMANCE; ETHER; ION;
D O I
10.1002/eem2.12635
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial chemistry of solid electrolyte interphases (SEI) on lithium (Li) electrode is directly determined by the structural chemistry of the electric double layer (EDL) at the interface. Herein, a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed (p-hydroxybenzoic acid (pHA) is selected as proof-of-concept). According to the molecular dynamics (MD) simulation and density functional theory (DFT) calculation results, the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL, reduces the lowest unoccupied molecular orbital (LUMO) energy level of anions in the EDL, and the number of free solvent molecules, which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition. Based on this strategy, Li||Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm(-2), and the long-term cycle stability of Li||Li cells is increased to 1200 h. In addition, the full cell pairing with the commercial LiFePO4 (LFP) cathodes exhibits stable cycling performance at 1C, with a capacity retention close to 90% after 200 cycles.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] High-stability double-layer polymer-inorganic composite electrolyte fabricated through ultraviolet curing process for solid-state lithium metal batteries
    Liang, Xinghua
    Shen, Pengcheng
    Lan, Lingxiao
    Qin, Yunmei
    Yan, Ge
    Huang, Meihong
    Lu, Xuanan
    Hun, Qiankun
    Wang, Yujiang
    Wang, Jixuan
    FRONTIERS OF MATERIALS SCIENCE, 2024, 18 (02)
  • [22] A painted layer for high-rate and high-capacity solid-state lithium-metal batteries
    Sun, Bin
    Jin, Yang
    Lang, Jialiang
    Liu, Kai
    Fang, Minghao
    Wu, Hui
    CHEMICAL COMMUNICATIONS, 2019, 55 (47) : 6704 - 6707
  • [23] The Effect of the Structure of an Electric Double Layer on the Stability of Bulk Nanobubbles
    Koshoridze, S. I.
    TECHNICAL PHYSICS LETTERS, 2024, 50 (01) : 55 - 57
  • [24] Electrolyte Engineering via Fluorinated Siloxane Solvent for Achieving High-Performance Lithium-Metal Batteries
    Huang, Gaoxu
    Liao, Yaqi
    Liu, Honghao
    Jin, Xiaopan
    Guan, Mengjia
    Yu, Feng
    Dai, Bin
    Li, Yongsheng
    ACS NANO, 2024, 18 (24) : 15802 - 15814
  • [25] A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer
    Jin, Liming
    Li, Gaoran
    Liu, Binhong
    Li, Zhoupeng
    Zheng, Junsheng
    Zheng, Jim P.
    JOURNAL OF POWER SOURCES, 2017, 355 : 147 - 153
  • [26] CNTs decorated Cu-BTC with catalytic effect for high-stability lithium-sulfur batteries
    Deng, Teng
    Men, Xin-Liang
    Jiao, Xue-Chao
    Wang, Juan
    CERAMICS INTERNATIONAL, 2022, 48 (03) : 4352 - 4360
  • [27] Enabling High-Stability of Aqueous-Processed Nickel-Rich Positive Electrodes in Lithium Metal Batteries
    Wu, Fanglin
    Kuenzel, Matthias
    Diemant, Thomas
    Mullaliu, Angelo
    Fang, Shan
    Kim, Jae-Kwang
    Kim, Hee Woong
    Kim, Guk-Tae
    Passerini, Stefano
    SMALL, 2022, 18 (42)
  • [28] Identifying the Critical Anion-Cation Coordination to Regulate the Electric Double Layer for an Efficient Lithium-Metal Anode Interface
    Xu, Rui
    Shen, Xin
    Ma, Xia-Xia
    Yan, Chong
    Zhang, Xue-Qiang
    Chen, Xiang
    Ding, Jun-Fan
    Huang, Jia-Qi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (08) : 4215 - 4220
  • [29] High-Rate and Stable LLZO-Based Lithium-Metal Batteries Enabled via a Tin Interlayer
    Thenuwara, Akila C.
    Narayan, Sooraj
    Thompson, Eric L.
    Quesada, Mark A.
    Malkowski, Thomas F.
    Parrotte, Kenneth D.
    Lostracco, Kathryn E.
    Seeley, Lori A.
    Borges, Melroy R.
    Song, Zhen
    Rezikyan, Aram
    Labant, Marissa
    Wu, Xingzhong
    Badding, Michael E.
    Gallagher, Kevin G.
    ACS ENERGY LETTERS, 2024, 9 (05): : 2401 - 2409
  • [30] Lithophilic metal-ceramic Achieving high durability in lithium-metal batteries via lithophilic metal-ceramic interface engineering
    Choi, Junyoung
    Lee, Myeong Hwan
    Heo, Un-Seon
    Lim, Jae-Hong
    Nam, Kyung-Wan
    Suk, Jungdon
    ENERGY STORAGE MATERIALS, 2025, 76