Lithophilic metal-ceramic Achieving high durability in lithium-metal batteries via lithophilic metal-ceramic interface engineering

被引:0
|
作者
Choi, Junyoung [1 ,2 ]
Lee, Myeong Hwan [1 ]
Heo, Un-Seon [3 ]
Lim, Jae-Hong [4 ]
Nam, Kyung-Wan [3 ]
Suk, Jungdon [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol, Adv Energy Mat Res Ctr, Adv Mat Div, 141 Gajeong Ro, Daejeon 34114, South Korea
[2] Univ Sci & Technol, Dept Adv Mat, 217 Gajeong Ro, Daejeon 34113, South Korea
[3] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 04620, South Korea
[4] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 37673, South Korea
关键词
Lithium metal batteries; Lithium metal protective layer; Lithophilic metal; Ceramic layer; DENDRITE-FREE; HIGH-ENERGY; ANODE; ELECTROLYTES; CHALLENGES; STABILITY; CAPACITY; BEHAVIOR;
D O I
10.1016/j.ensm.2025.104135
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly reactive lithium (Li) requires precise control of nucleation and growth, necessitating stable processing techniques for the fabrication of Li-metal batteries. This study proposes a novel strategy to mitigate Li dendrite formation using a dual-layer protective coating composed of a ceramic (Al2O3) and lithophilic metal (Au) fabricated via a solvent-free transfer printing process. The dual-layer structure consists of a Au layer positioned between Al2O3 and Li metal, where the Al2O3 layer suppresses dendrite growth and promotes uniform Li-ion flux. Meanwhile, the Au layer functions as a seed for Li deposition, reducing the nucleation overpotential of Li deposition through the Au-Li alloy formation, thus enabling uniform Li deposition. Using synchrotron-based operando X-ray computed tomography (CT), we directly visualized and analyzed the Li growth mechanisms within the Al2O3@Au dual-layer structure, confirming its role in facilitating uniform Li deposition and effectively preventing dendrite formation. This structural synergy resulted in superior battery performance. the Al2O3@Au dual-layer demonstrated outstanding performance in NCM811/Li cells (2.6 mAh cm-2), achieving a capacity retention rate of over 85 % and Coulombic efficiency exceeding 99.8 % after 150 cycles. This study offers a scalable and practical approach to stabilizing Li metal anodes, thus paving the way for next-generation batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The peculiarity of the metal-ceramic interface
    Zhang, Zaoli
    Long, Yao
    Cazottes, S.
    Daniel, R.
    Mitterer, C.
    Dehm, G.
    SCIENTIFIC REPORTS, 2015, 5
  • [2] The peculiarity of the metal-ceramic interface
    Zaoli Zhang
    Yao Long
    S. Cazottes
    R. Daniel
    C. Mitterer
    G. Dehm
    Scientific Reports, 5
  • [3] Ion exchange at a metal-ceramic interface
    Raj, R
    Saha, A
    An, L
    Hasselman, DPH
    Ernst, P
    ACTA MATERIALIA, 2002, 50 (05) : 1165 - 1176
  • [4] METAL-CERAMIC BOUNDARY
    VANVLACK, LH
    METALS ENGINEERING QUARTERLY, 1965, 5 (04): : 7 - &
  • [5] METAL-CERAMIC BRAZING
    KYSER, RH
    SMOOT, AR
    ARNETT, HD
    REPORT OF NRL PROGRESS, 1969, (OCT): : 18 - &
  • [6] THE METAL-CERAMIC RESTORATION
    MCLEAN, JW
    DENTAL CLINICS OF NORTH AMERICA, 1983, 27 (04) : 747 - 761
  • [7] METAL-CERAMIC RESTORATIONS
    ABBOTT, SJ
    JOURNAL OF PROSTHETIC DENTISTRY, 1978, 39 (03): : 293 - 294
  • [8] Metal-ceramic nanocomposites
    Zhang, DL
    NOVEL NANOCRYSTALLINE ALLOYS AND MAGNETIC NANOMATERIALS, 2005, : 205 - 219
  • [9] METAL-CERAMIC JOINING
    NOGI, K
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1985, 71 : 1617 - 1617
  • [10] BRAZING OF CERAMIC AND METAL-CERAMIC COMPOUNDS
    WIELAGE, B
    ASHOFF, D
    JOINING CERAMICS, GLASS AND METAL, 1989, : 385 - 392