Lithophilic metal-ceramic Achieving high durability in lithium-metal batteries via lithophilic metal-ceramic interface engineering

被引:0
|
作者
Choi, Junyoung [1 ,2 ]
Lee, Myeong Hwan [1 ]
Heo, Un-Seon [3 ]
Lim, Jae-Hong [4 ]
Nam, Kyung-Wan [3 ]
Suk, Jungdon [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol, Adv Energy Mat Res Ctr, Adv Mat Div, 141 Gajeong Ro, Daejeon 34114, South Korea
[2] Univ Sci & Technol, Dept Adv Mat, 217 Gajeong Ro, Daejeon 34113, South Korea
[3] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 04620, South Korea
[4] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 37673, South Korea
关键词
Lithium metal batteries; Lithium metal protective layer; Lithophilic metal; Ceramic layer; DENDRITE-FREE; HIGH-ENERGY; ANODE; ELECTROLYTES; CHALLENGES; STABILITY; CAPACITY; BEHAVIOR;
D O I
10.1016/j.ensm.2025.104135
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly reactive lithium (Li) requires precise control of nucleation and growth, necessitating stable processing techniques for the fabrication of Li-metal batteries. This study proposes a novel strategy to mitigate Li dendrite formation using a dual-layer protective coating composed of a ceramic (Al2O3) and lithophilic metal (Au) fabricated via a solvent-free transfer printing process. The dual-layer structure consists of a Au layer positioned between Al2O3 and Li metal, where the Al2O3 layer suppresses dendrite growth and promotes uniform Li-ion flux. Meanwhile, the Au layer functions as a seed for Li deposition, reducing the nucleation overpotential of Li deposition through the Au-Li alloy formation, thus enabling uniform Li deposition. Using synchrotron-based operando X-ray computed tomography (CT), we directly visualized and analyzed the Li growth mechanisms within the Al2O3@Au dual-layer structure, confirming its role in facilitating uniform Li deposition and effectively preventing dendrite formation. This structural synergy resulted in superior battery performance. the Al2O3@Au dual-layer demonstrated outstanding performance in NCM811/Li cells (2.6 mAh cm-2), achieving a capacity retention rate of over 85 % and Coulombic efficiency exceeding 99.8 % after 150 cycles. This study offers a scalable and practical approach to stabilizing Li metal anodes, thus paving the way for next-generation batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Metal-ceramic composites processed via microwaves
    Karandikar, Prashant
    Advanced Materials and Processes, 2005, 163 (08):
  • [22] Properties of a metal-ceramic cathode
    Yu. A. Kotov
    S. Yu. Sokovnin
    M. E. Balezin
    Technical Physics, 2003, 48 : 503 - 507
  • [23] The theory of metal-ceramic interfaces
    Finnis, MW
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (32) : 5811 - 5836
  • [24] Metal-ceramic structural details
    Radomysel'skij, I.D.
    Poroshkovaya Metallurgiya, 2002, (9-10): : 105 - 117
  • [25] Fracture in metal-ceramic composites
    Agrawal, P
    Sun, CT
    COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (09) : 1167 - 1178
  • [26] NEW METAL-CERAMIC CROWN
    MCLEAN, JW
    JEANSONNE, EE
    BRUGGERS, H
    LYNN, DB
    JOURNAL OF PROSTHETIC DENTISTRY, 1978, 40 (03): : 273 - 287
  • [27] METAL-CERAMIC JOINING BY LASER
    PELLETIER, JM
    ROBIN, M
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C7): : 1061 - 1064
  • [28] Progress with metal-ceramic composites
    不详
    CFI-CERAMIC FORUM INTERNATIONAL, 1996, 73 (10): : 561 - 561
  • [29] THEORY OF METAL-CERAMIC ADHESION
    HONG, T
    SMITH, JR
    SROLOVITZ, DJ
    ACTA METALLURGICA ET MATERIALIA, 1995, 43 (07): : 2721 - 2730
  • [30] INSITU FORMATION OF METAL-CERAMIC MICROSTRUCTURES, INCLUDING METAL-CERAMIC COMPOSITES, USING REDUCTION REACTIONS
    USTUNDAG, E
    SUBRAMANIAN, R
    VAIA, R
    DIECKMANN, R
    SASS, SL
    ACTA METALLURGICA ET MATERIALIA, 1993, 41 (07): : 2153 - 2161