High-Rate and Stable LLZO-Based Lithium-Metal Batteries Enabled via a Tin Interlayer

被引:2
|
作者
Thenuwara, Akila C. [1 ]
Narayan, Sooraj [1 ]
Thompson, Eric L. [1 ]
Quesada, Mark A. [1 ]
Malkowski, Thomas F. [1 ]
Parrotte, Kenneth D. [1 ]
Lostracco, Kathryn E. [1 ]
Seeley, Lori A. [1 ]
Borges, Melroy R. [1 ]
Song, Zhen [1 ]
Rezikyan, Aram [1 ]
Labant, Marissa [1 ]
Wu, Xingzhong [1 ]
Badding, Michael E. [1 ]
Gallagher, Kevin G. [1 ]
机构
[1] Corning Inc, Sullivan Pk Campus, Painted Post, NY 14870 USA
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 05期
关键词
INTERFACE; ELECTROLYTES; ANODES; PROPAGATION; LAYER;
D O I
10.1021/acsenergylett.4c00735
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-metal batteries with solid electrolyte separators promise improvements in energy density, fast charge capability, and safety. However, the lack of control of the solid electrolyte-lithium-metal interface continues to impede development. Interlayers between lithium-metal and the solid electrolyte are reported to improve performance but have limitations due to stability, rate limitations, and the use of undesirable elements (e.g., Ag, Au). Here, we show that a thin layer of the abundant metal Sn provides the required stability and transport properties to enable commercially relevant current densities (5 mA cm(-2)) and external pressures (0.3 MPa) at room temperature in Li7La3Zr7O12 (LLZO) hybrid cells. Moreover, these Sn interlayer full cells constructed with NMC cathodes (areal capacity of similar to 2.5 mAh cm(-2)) show no capacity loss for over 500 cycles under symmetric C/3 cycling. Both the interlayer phase behavior and Li transport properties are proposed to underpin the performance of metal-alloy interlayers as indicated by electrochemical and in situ and ex situ characterization techniques.
引用
收藏
页码:2401 / 2409
页数:9
相关论文
共 50 条
  • [1] Interplay among Metallic Interlayers, Discharge Rate, and Pressure in LLZO-Based Lithium-Metal Batteries
    Thenuwara, Akila C.
    Thompson, Eric L.
    Malkowski, Thomas F.
    Parrotte, Kenneth D.
    Lostracco, Kathryn E.
    Narayan, Sooraj
    Rooney, Ryan T.
    Seeley, Lori A.
    Borges, Melroy R.
    Conway, Brent D.
    Song, Zhen
    Badding, Michael E.
    Gallagher, Kevin G.
    ACS ENERGY LETTERS, 2023, 8 (10) : 4016 - 4023
  • [2] Optimization strategies for key interfaces of LLZO-based solid-state lithium metal batteries
    Chu, Jiangwei
    Li, Ziwei
    Wang, Jin
    Huang, Gang
    Zhang, Xinbo
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (09) : 2109 - 2134
  • [3] High-Rate Cycling of Lithium-Metal Batteries Enabled by Dual-Salt Electrolyte-Assisted Micropatterned Interfaces
    Yoon, Byeolhee
    Park, Jinkyu
    Lee, Jinhon
    Kim, Seokwoo
    Ren, Xiaodi
    Lee, Yong Min
    Kim, Hee-Tak
    Lee, Hongkyung
    Ryou, Myung-Hyun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (35) : 31777 - 31785
  • [4] Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries
    Guo, Junling
    Zhao, Shupeng
    Yang, He
    Zhang, Fengxiang
    Liu, Jinping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (05) : 2184 - 2191
  • [5] A painted layer for high-rate and high-capacity solid-state lithium-metal batteries
    Sun, Bin
    Jin, Yang
    Lang, Jialiang
    Liu, Kai
    Fang, Minghao
    Wu, Hui
    CHEMICAL COMMUNICATIONS, 2019, 55 (47) : 6704 - 6707
  • [6] Stable Cycling of High-Voltage Lithium-Metal Batteries Enabled by High-Concentration FEC-Based Electrolyte
    Wang, Wei
    Zhang, Jiaolong
    Yang, Qin
    Wang, Shuwei
    Wang, Wenhui
    Li, Baohua
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 22901 - 22909
  • [7] A strain rate-dependent interfacial contact model by considering the strain rate and temperature of lithium for LLZO-based solid-state lithium batteries
    Shangyang He
    Haodong Yang
    Zhanjiang Wang
    Journal of Solid State Electrochemistry, 2023, 27 : 3465 - 3476
  • [8] Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization
    Zhou, Dong
    Zhang, Mengyi
    Sun, Fu
    Arlt, Tobias
    Frerichs, Joop E.
    Dong, Kang
    Wang, Jun
    Hilger, Andre
    Wilde, Fabian
    Kolek, Martin
    Hansen, Michael Ryan
    Bieker, Peter
    Manke, Ingo
    Stan, Marian C.
    Winter, Martin
    NANO ENERGY, 2020, 77
  • [9] Molecular Engineering Enabled Stable Deep Eutectic Amide-Based Electrolyte for High-Temperature Lithium-Metal Batteries
    Gao, Yuanxin
    Zhu, Lingyu
    Wang, Bingning
    Xu, Yuanjian
    Chai, Jingchao
    Fu, Aiping
    Li, Hao
    Li, Jiangpeng
    Peng, Yu
    Zheng, Yun
    Wang, Yingying
    Lee, Jin Yong
    Lv, Dong
    Liu, Zhihong
    ACS ENERGY LETTERS, 2024, 9 (08): : 3931 - 3938
  • [10] High-rate sodium metal batteries enabled by trifluormethylfullerene additive
    Li, Pengju
    Huang, Xiaobo
    Jiang, Zhipeng
    Zhang, Han
    Yu, Pengwei
    Lu, Xing
    Xie, Jia
    NANO RESEARCH, 2022, 15 (08) : 7172 - 7179