Deep learning-enhanced diabetic retinopathy image classification

被引:8
|
作者
Alwakid, Ghadah [1 ]
Gouda, Walaa [2 ]
Humayun, Mamoona [3 ]
Jhanjhi, Noor Zaman [4 ]
机构
[1] Jouf Univ, Coll Comp & Informat Sci, Dept Comp Sci, Sakakah, Saudi Arabia
[2] Benha Univ, Fac Engn Shoubra, Dept Elect Engn, Cairo, Egypt
[3] Jouf Univ, Coll Comp & Informat Sci, Dept Informat Syst, Sakakah 72341, Al Jouf, Saudi Arabia
[4] Taylors Univ, Sch Comp Sci, Subang Jaya, Malaysia
来源
DIGITAL HEALTH | 2023年 / 9卷
关键词
Diabetic retinopathy; vision loss; deep learning; enhanced images; transfer learning; densenet-121; augmentation; DDR; APTOS; ADAPTIVE HISTOGRAM EQUALIZATION; DIAGNOSIS; FRAMEWORK; NETWORK;
D O I
10.1177/20552076231194942
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
ObjectiveDiabetic retinopathy (DR) can sometimes be treated and prevented from causing irreversible vision loss if caught and treated properly. In this work, a deep learning (DL) model is employed to accurately identify all five stages of DR. MethodsThe suggested methodology presents two examples, one with and one without picture augmentation. A balanced dataset meeting the same criteria in both cases is then generated using augmentative methods. The DenseNet-121-rendered model on the Asia Pacific Tele-Ophthalmology Society (APTOS) and dataset for diabetic retinopathy (DDR) datasets performed exceptionally well when compared to other methods for identifying the five stages of DR. ResultsOur propose model achieved the highest test accuracy of 98.36%, top-2 accuracy of 100%, and top-3 accuracy of 100% for the APTOS dataset, and the highest test accuracy of 79.67%, top-2 accuracy of 92.%76, and top-3 accuracy of 98.94% for the DDR dataset. Additional criteria (precision, recall, and F1-score) for gauging the efficacy of the proposed model were established with the help of APTOS and DDR. ConclusionsIt was discovered that feeding a model with higher-quality photographs increased its efficiency and ability for learning, as opposed to both state-of-the-art technology and the other, non-enhanced model.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Automated image curation in diabetic retinopathy screening using deep learning
    Nderitu, Paul
    do Rio, Joan M. Nunez
    Webster, Ms Laura
    Mann, Samantha S.
    Hopkins, David
    Cardoso, M. Jorge
    Modat, Marc
    Bergeles, Christos
    Jackson, Timothy L.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [42] Automated image curation in diabetic retinopathy screening using deep learning
    Paul Nderitu
    Joan M. Nunez do Rio
    Ms Laura Webster
    Samantha S. Mann
    David Hopkins
    M. Jorge Cardoso
    Marc Modat
    Christos Bergeles
    Timothy L. Jackson
    Scientific Reports, 12
  • [43] A deep-learning enhanced algorithm for the automated detection of diabetic retinopathy
    Beham, A. Rafega
    Thanikaiselvan, V
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023,
  • [44] An Enhanced Segmentation and Deep Learning Architecture for Early Diabetic Retinopathy Detection
    Maaliw, Renato R., III
    Mabunga, Zoren P.
    De Veluz, Maria Rossana D.
    Alon, Alvin S.
    Lagman, Ace C.
    Garcia, Manuel B.
    Lacatan, Luisito Lolong
    Dellosa, Rhowel M.
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 168 - 175
  • [45] A deep learning-enhanced framework for multiphysics joint inversion
    Hu, Yanyan
    Wei, Xiaolong
    Wu, Xuqing
    Sun, Jiajia
    Chen, Jiuping
    Huang, Yueqin
    Chen, Jiefu
    GEOPHYSICS, 2023, 88 (01) : K13 - K26
  • [46] Deep learning-enhanced prediction of terahertz response of metasurfaces
    Min, Xuetao
    Hao, Xiaoyuan
    Chen, Yupeng
    Liu, Mai
    Cheng, Xiaomeng
    Huang, Wei
    Li, Yanfeng
    Xu, Quan
    Zhang, Xueqian
    Ye, Miao
    Han, Jiaguang
    OPTICS AND LASER TECHNOLOGY, 2024, 179
  • [47] State of the Art on Deep Learning-enhanced Rendering Methods
    Wang, Qi
    Zhong, Zhihua
    Huo, Yuchi
    Bao, Hujun
    Wang, Rui
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (06) : 799 - 821
  • [48] State of the Art on Deep Learning-enhanced Rendering Methods
    Qi Wang
    Zhihua Zhong
    Yuchi Huo
    Hujun Bao
    Rui Wang
    Machine Intelligence Research, 2023, 20 : 799 - 821
  • [49] Deep learning-enhanced numerical simulation of ground penetrating radar and image detection of road cracks
    Liu Zhen
    Gu XingYu
    Li Jun
    Dong Qiao
    Jiang JiWang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2024, 67 (06): : 2455 - 2471
  • [50] Deep learning for diabetic retinopathy detection and classification based on fundus images: A review
    Tsiknakis, Nikos
    Theodoropoulos, Dimitris
    Manikis, Georgios
    Ktistakis, Emmanouil
    Boutsora, Ourania
    Berto, Alexa
    Scarpa, Fabio
    Scarpa, Alberto
    Fotiadis, Dimitrios, I
    Marias, Kostas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135