Automated image curation in diabetic retinopathy screening using deep learning

被引:5
|
作者
Nderitu, Paul [1 ,2 ]
do Rio, Joan M. Nunez [1 ]
Webster, Ms Laura [3 ]
Mann, Samantha S. [3 ,4 ]
Hopkins, David [5 ,6 ]
Cardoso, M. Jorge [7 ]
Modat, Marc [7 ]
Bergeles, Christos [7 ]
Jackson, Timothy L. [1 ,2 ]
机构
[1] Kings Coll London, Sect Ophthalmol, London, England
[2] Kings Coll Hosp London, Kings Ophthalmol Res Unit, London, England
[3] Guys & St Thomas Fdn Trust, South East London Diabet Eye Screening Programme, London, England
[4] Guys & St Thomas Fdn Trust, Dept Ophthalmol, London, England
[5] Kings Coll London, Sch Life Course Sci, Dept Diabet, London, England
[6] Kings Hlth Partners, Inst Diabet Endocrinol & Obes, London, England
[7] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
关键词
QUALITY ASSESSMENT; FUNDUS IMAGES; VALIDATION; DATASET;
D O I
10.1038/s41598-022-15491-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diabetic retinopathy (DR) screening images are heterogeneous and contain undesirable non-retinal, incorrect field and ungradable samples which require curation, a laborious task to perform manually. We developed and validated single and multi-output laterality, retinal presence, retinal field and gradability classification deep learning (DL) models for automated curation. The internal dataset comprised of 7743 images from DR screening (UK) with 1479 external test images (Portugal and Paraguay). Internal vs external multi-output laterality AUROC were right (0.994 vs 0.905), left (0.994 vs 0.911) and unidentifiable (0.996 vs 0.680). Retinal presence AUROC were (1.000 vs 1.000). Retinal field AUROC were macula (0.994 vs 0.955), nasal (0.995 vs 0.962) and other retinal field (0.997 vs 0.944). Gradability AUROC were (0.985 vs 0.918). DL effectively detects laterality, retinal presence, retinal field and gradability of DR screening images with generalisation between centres and populations. DL models could be used for automated image curation within DR screening.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Automated image curation in diabetic retinopathy screening using deep learning
    Paul Nderitu
    Joan M. Nunez do Rio
    Ms Laura Webster
    Samantha S. Mann
    David Hopkins
    M. Jorge Cardoso
    Marc Modat
    Christos Bergeles
    Timothy L. Jackson
    Scientific Reports, 12
  • [2] Deep learning for the automated curation of images from diabetic retinopathy screening
    Nderitu, P.
    do Rio, J. M. Nunez
    Webster, L.
    Mann, S.
    Hopkins, D.
    Cardoso, J. M.
    Modat, M.
    Bergeles, C.
    Jackson, T. L.
    DIABETIC MEDICINE, 2022, 39
  • [3] Automated diabetic retinopathy screening using deep learning
    Guefrachi, Sarra
    Echtioui, Amira
    Hamam, Habib
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 65249 - 65266
  • [4] Automated Identification of Diabetic Retinopathy Using Deep Learning
    Gargeya, Rishab
    Leng, Theodore
    OPHTHALMOLOGY, 2017, 124 (07) : 962 - 969
  • [5] Improving diabetic retinopathy screening using deep learning
    Mellor, J. C.
    Ochs, A.
    Colhoun, H. M.
    McKeigue, P.
    DIABETOLOGIA, 2018, 61 : S91 - S91
  • [6] Diabetic retinopathy using image processing and deep learning
    Swain, Debabrata
    Bijawe, Sanket Sanjay
    Akolkar, Prasanna Prasad
    Shinde, Aditya
    Mahajani, Mihir Vijay
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 14 (04) : 397 - 409
  • [7] Variability in Grading Diabetic Retinopathy Using Retinal Photography and Its Comparison with an Automated Deep Learning Diabetic Retinopathy Screening Software
    Teoh, Chin Sheng
    Wong, Kah Hie
    Xiao, Di
    Wong, Hung Chew
    Zhao, Paul
    Chan, Hwei Wuen
    Yuen, Yew Sen
    Naing, Thet
    Yogesan, Kanagasingam
    Koh, Victor Teck Chang
    HEALTHCARE, 2023, 11 (12)
  • [8] Deep image mining for diabetic retinopathy screening
    Quellec, Gwenole
    Charriere, Katia
    Boudi, Yassine
    Cochener, Beatrice
    Lamard, Mathieu
    MEDICAL IMAGE ANALYSIS, 2017, 39 : 178 - 193
  • [9] Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach
    Wang, Yueye
    Shi, Danli
    Tan, Zachary
    Niu, Yong
    Jiang, Yu
    Xiong, Ruilin
    Peng, Guankai
    He, Mingguang
    FRONTIERS IN MEDICINE, 2021, 8
  • [10] Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment
    Rego, Silvia
    Dutra-Medeiros, Marco
    Soares, Filipe
    Monteiro-Soares, Matilde
    OPHTHALMOLOGICA, 2021, 244 (03) : 250 - 257