Deep learning-enhanced prediction of terahertz response of metasurfaces

被引:0
|
作者
Min, Xuetao [1 ]
Hao, Xiaoyuan [1 ]
Chen, Yupeng [1 ]
Liu, Mai [2 ,3 ]
Cheng, Xiaomeng [1 ]
Huang, Wei [1 ]
Li, Yanfeng [2 ,3 ]
Xu, Quan [2 ,3 ]
Zhang, Xueqian [2 ,3 ]
Ye, Miao [1 ]
Han, Jiaguang [1 ,2 ,3 ]
机构
[1] Guilin Univ Elect Technol, Sch Optoelect Engn, Guangxi Key Lab Optoelect Informat Proc, Guilin 541004, Peoples R China
[2] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Deep learning; Metasurfaces; Terahertz response; PHASE;
D O I
10.1016/j.optlastec.2024.111321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces offer an exciting opportunity to manipulate electromagnetic waves, presenting vast potential across diverse applications. In this study, we introduce a novel deep learning approach that integrates an Autoencoder with a Multi-Layer Perceptron to effectively forecast the Terahertz (THz) spectral response of metasurfaces. By harnessing a large dataset of training examples, our model adeptly captures the intricate correlation between metasurface structures and their optical responses, circumventing the traditionally time-consuming analysis of complex patterns. This proposed methodology furnishes a valuable tool for examining the THz transmission response of metasurfaces and has the potential to expedite metasurface design processes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep Learning-Enhanced MHC-II Presentation Prediction and Peptidome Deconvolution
    Deng, Juntao
    Liu, Min
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2022, 2022, 13760 : 180 - 191
  • [2] Deep Learning-Enhanced Inverse Modeling of Terahertz Metasurface Based on a Convolutional Neural Network Technique
    Gao, Muzhi
    Jiang, Dawei
    Zhu, Gaoyang
    Wang, Bin
    PHOTONICS, 2024, 11 (05)
  • [3] Deep learning-enhanced R-loop prediction provides mechanistic implications for diseases
    Hu, Jiyun
    Xing, Zetong
    Yang, Hongbing
    Zhou, Yongli
    Guo, Liufei
    Zhang, Xianhong
    Xu, Longsheng
    Liu, Qiong
    Ye, Jing
    Zhong, Xiaoming
    Wang, Jixin
    Lin, Ruoyao
    Long, Erping
    Jiang, Jiewei
    Chen, Liang
    Pan, Yongcheng
    He, Lang
    Chen, Jia-Yu
    ISCIENCE, 2024, 27 (08)
  • [4] A deep learning-enhanced framework for multiphysics joint inversion
    Hu, Yanyan
    Wei, Xiaolong
    Wu, Xuqing
    Sun, Jiajia
    Chen, Jiuping
    Huang, Yueqin
    Chen, Jiefu
    GEOPHYSICS, 2023, 88 (01) : K13 - K26
  • [5] Deep learning-enhanced diabetic retinopathy image classification
    Alwakid, Ghadah
    Gouda, Walaa
    Humayun, Mamoona
    Jhanjhi, Noor Zaman
    DIGITAL HEALTH, 2023, 9
  • [6] State of the Art on Deep Learning-enhanced Rendering Methods
    Wang, Qi
    Zhong, Zhihua
    Huo, Yuchi
    Bao, Hujun
    Wang, Rui
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (06) : 799 - 821
  • [7] State of the Art on Deep Learning-enhanced Rendering Methods
    Qi Wang
    Zhihua Zhong
    Yuchi Huo
    Hujun Bao
    Rui Wang
    Machine Intelligence Research, 2023, 20 : 799 - 821
  • [8] Deep learning-enhanced microscopy with extended depth-of-field
    Zhang, Yide
    LIGHT-SCIENCE & APPLICATIONS, 2023, 12 (01)
  • [9] Deep Learning-Enhanced Physical Layer Authentication for Mobile Devices
    Guo, Yijia
    Zhang, Junqing
    Hong, Y. -W. Peter
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 826 - 831
  • [10] Deep learning-enhanced, open-source eigenmode expansion
    Hammond, Ian M.
    Hammond, Alec M.
    Camacho, Ryan M.
    OPTICS LETTERS, 2022, 47 (06) : 1383 - 1386