Adiabatic quantum learning

被引:0
|
作者
Ma, Nannan [1 ]
Chu, Wenhao [1 ]
Zhao, P. Z. [2 ]
Gong, Jiangbin [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[3] Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Int Campus, Binhai New City 350207, Fuzhou, Peoples R China
关键词
Quantum theory;
D O I
10.1103/PhysRevA.108.042420
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum machine learning has attracted considerable interest due to its potential to improve certain learning tasks. In conventional quantum machine learning, the output is the expectation value of a preselected observable, and the projective measurement forces a quantum circuit to run many times to obtain the output with reasonable precision. In this work, we propose a protocol to utilize the adiabatic quantum evolution to execute quantum learning tasks, in which the output is obtained by the adiabatic weak measurement rather than the projective measurement. In comparison to previous protocols, we use only a single-shot measurement and therefore avoid the measurement repetition in the previous protocols. Moreover, our protocol allows us to extract the expectation values of multiple observables without disrupting the concerned quantum states.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Quantum adiabatic machine learning
    Pudenz, Kristen L.
    Lidar, Daniel A.
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (05) : 2027 - 2070
  • [2] Quantum adiabatic machine learning
    Kristen L. Pudenz
    Daniel A. Lidar
    [J]. Quantum Information Processing, 2013, 12 : 2027 - 2070
  • [3] LEARNING QUANTUM OPERATOR BY QUANTUM ADIABATIC COMPUTATION
    Liu, Ding
    Jiang, Minghu
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 63 - 67
  • [4] Quantum Semantic Learning by Reverse Annealing of an Adiabatic Quantum Computer
    Rocutto, Lorenzo
    Destri, Claudio
    Prati, Enrico
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (02)
  • [5] Breaking adiabatic quantum control with deep learning
    Ding, Yongcheng
    Ban, Yue
    Martin-Guerrero, Jose D.
    Solano, Enrique
    Casanova, Jorge
    Chen, Xi
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [6] Quantum adiabatic algorithm design using reinforcement learning
    Lin, Jian
    Lai, Zhong Yuan
    Li, Xiaopeng
    [J]. PHYSICAL REVIEW A, 2020, 101 (05)
  • [7] Learning adiabatic quantum algorithms over optimization problems
    Pastorello, Davide
    Blanzieri, Enrico
    Cavecchia, Valter
    [J]. QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [8] Adiabatic Quantum Computation Applied to Deep Learning Networks
    Liu, Jeremy
    Spedalieri, Federico M.
    Yao, Ke-Thia
    Potok, Thomas E.
    Schuman, Catherine
    Young, Steven
    Patton, Robert
    Rose, Garrett S.
    Chamka, Gangotree
    [J]. ENTROPY, 2018, 20 (05)
  • [9] Machine learning assisted quantum adiabatic algorithm design
    Lin Jian
    Ye Meng
    Zhu Jia-Wei
    Li Xiao-Peng
    [J]. ACTA PHYSICA SINICA, 2021, 70 (14)
  • [10] Learning adiabatic quantum algorithms over optimization problems
    Davide Pastorello
    Enrico Blanzieri
    Valter Cavecchia
    [J]. Quantum Machine Intelligence, 2021, 3