Learning adiabatic quantum algorithms over optimization problems

被引:4
|
作者
Pastorello, Davide [1 ,2 ]
Blanzieri, Enrico [1 ,2 ]
Cavecchia, Valter [3 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, Via Sommar 9, I-38123 Trento, Italy
[2] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat TIFPA, Via Sommar 14, I-38123 Trento, Italy
[3] CNR, Inst Mat Elect & Magnetism, Via Cascata 56-C, I-38123 Trento, Italy
关键词
Adiabatic quantum computing; Hybrid quantum-classical algorithms; Tabu search;
D O I
10.1007/s42484-020-00030-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An adiabatic quantum algorithm is essentially given by three elements: An initial Hamiltonian with known ground state, a problem Hamiltonian whose ground state corresponds to the solution of the given problem, and an evolution schedule such that the adiabatic condition is satisfied. A correct choice of these elements is crucial for an efficient adiabatic quantum computation. In this paper, we propose a hybrid quantum-classical algorithm that, by solving optimization problems with an adiabatic machine, determines a problem Hamiltonian assuming restrictions on the class of available problem Hamiltonians. The scheme is based on repeated calls to the quantum machine into a classical iterative structure. In particular, we suggest a technique to estimate the encoding of a given optimization problem into a problem Hamiltonian and we prove the convergence of the algorithm.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Learning adiabatic quantum algorithms over optimization problems
    Davide Pastorello
    Enrico Blanzieri
    Valter Cavecchia
    [J]. Quantum Machine Intelligence, 2021, 3
  • [2] Adiabatic quantum algorithms
    Egger, J.
    McCurdy, M.
    Kyriakidis, J.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2013, 91 (06) : 479 - 481
  • [3] GENETIC ALGORITHMS AND OPTIMIZATION PROBLEMS IN QUANTUM COMPUTING
    Hardy, Y.
    Steeb, W-H.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2010, 21 (11): : 1359 - 1375
  • [4] DIFFERENT ADIABATIC QUANTUM OPTIMIZATION ALGORITHMS FOR THE NP-COMPLETE EXACT COVER AND 3SAT PROBLEMS
    Choi, Vicky
    [J]. QUANTUM INFORMATION & COMPUTATION, 2011, 11 (7-8) : 638 - 648
  • [5] Resource efficient gadgets for compiling adiabatic quantum optimization problems
    Babbush, Ryan
    O'Gorman, Bryan
    Aspuru-Guzik, Alan
    [J]. ANNALEN DER PHYSIK, 2013, 525 (10-11) : 877 - 888
  • [6] Majorization in quantum adiabatic algorithms
    Wei, Zhaohui
    Ji, Zhengfeng
    Ying, Mingsheng
    [J]. PHYSICAL REVIEW A, 2006, 74 (04):
  • [7] Learning Combinatorial Optimization Algorithms over Graphs
    Dai, Hanjun
    Khalil, Elias B.
    Zhang, Yuyu
    Dilkina, Bistra
    Song, Le
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [8] The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective
    Bapst, V.
    Foini, L.
    Krzakala, F.
    Semerjian, G.
    Zamponi, F.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 523 (03): : 127 - 205
  • [9] An introduction to variational quantum algorithms for combinatorial optimization problems
    Grange, Camille
    Poss, Michael
    Bourreau, Eric
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024,
  • [10] An introduction to variational quantum algorithms for combinatorial optimization problems
    Camille Grange
    Michael Poss
    Eric Bourreau
    [J]. 4OR, 2023, 21 : 363 - 403