Quantum machine learning has attracted considerable interest due to its potential to improve certain learning tasks. In conventional quantum machine learning, the output is the expectation value of a preselected observable, and the projective measurement forces a quantum circuit to run many times to obtain the output with reasonable precision. In this work, we propose a protocol to utilize the adiabatic quantum evolution to execute quantum learning tasks, in which the output is obtained by the adiabatic weak measurement rather than the projective measurement. In comparison to previous protocols, we use only a single-shot measurement and therefore avoid the measurement repetition in the previous protocols. Moreover, our protocol allows us to extract the expectation values of multiple observables without disrupting the concerned quantum states.
机构:
Univ Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, BrazilUniv Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil
Santos, Alan C.
Cakmak, Barn
论文数: 0引用数: 0
h-index: 0
机构:
Bahcesehir Univ, Coll Engn & Nat Sci, TR-34353 Istanbul, TurkeyUniv Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil
Cakmak, Barn
Campbell, Steve
论文数: 0引用数: 0
h-index: 0
机构:
Trinity Coll Dublin, Sch Phys, Dublin 2, IrelandUniv Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil
Campbell, Steve
Zinner, Nikolaj T.
论文数: 0引用数: 0
h-index: 0
机构:
Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
Aarhus Univ, Aarhus Inst Adv Studies, DK-8000 Aarhus C, DenmarkUniv Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil