Few-shot learning based on deep learning: A survey

被引:5
|
作者
Zeng, Wu [1 ]
Xiao, Zheng-ying [1 ]
机构
[1] Putian Univ, Engn Training Ctr, Putian 351100, Peoples R China
关键词
few-shot learning; deep learning; image classification; metric learning; meta-learning; data enhancement; TEXT;
D O I
10.3934/mbe.2024029
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, with the development of science and technology, powerful computing devices have been constantly developing. As an important foundation, deep learning (DL) technology has achieved many successes in multiple fields. In addition, the success of deep learning also relies on the support of large-scale datasets, which can provide models with a variety of images. The rich information in these images can help the model learn more about various categories of images, thereby improving the classification performance and generalization ability of the model. However, in real application scenarios, it may be difficult for most tasks to collect a large number of images or enough images for model training, which also restricts the performance of the trained model to a certain extent. Therefore, how to use limited samples to train the model with high performance becomes key. In order to improve this problem, the few-shot learning (FSL) strategy is proposed, which aims to obtain a model with strong performance through a small amount of data. Therefore, FSL can play its advantages in some real scene tasks where a large number of training data cannot be obtained. In this review, we will mainly introduce the FSL methods for image classification based on DL, which are mainly divided into four categories: methods based on data enhancement, metric learning, meta-learning and adding other tasks. First, we introduce some classic and advanced FSL methods in the order of categories. Second, we introduce some datasets that are often used to test the performance of FSL methods and the performance of some classical and advanced FSL methods on two common datasets. Finally, we discuss the current challenges and future prospects in this field.
引用
收藏
页码:679 / 711
页数:33
相关论文
共 50 条
  • [41] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [42] Deep Transfer Learning for Few-Shot SAR Image Classification
    Rostami, Mohammad
    Kolouri, Soheil
    Eaton, Eric
    Kim, Kyungnam
    REMOTE SENSING, 2019, 11 (11)
  • [43] Few-shot learning in deep networks through global prototyping
    Blaes, Sebastian
    Burwick, Thomas
    NEURAL NETWORKS, 2017, 94 : 159 - 172
  • [44] A Deep few-shot learning algorithm for hyperspectral image classification
    Liu B.
    Zuo X.
    Tan X.
    Yu A.
    Guo W.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (10): : 1331 - 1342
  • [45] Few-shot learning with deep balanced network and acceleration strategy
    Kang Wang
    Xuesong Wang
    Tong Zhang
    Yuhu Cheng
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 133 - 144
  • [46] Few-shot learning with deep balanced network and acceleration strategy
    Wang, Kang
    Wang, Xuesong
    Zhang, Tong
    Cheng, Yuhu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (01) : 133 - 144
  • [47] A Few-shot Deep Learning Approach for Improved Intrusion Detection
    Chowdhury, Md Moin Uddin
    Hammond, Frederick
    Konowicz, Glenn
    Xin, Chunsheng
    Wu, Hongyi
    Li, Jiang
    2017 IEEE 8TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (UEMCON), 2017, : 456 - +
  • [48] Few-Shot Learning Based on Metric Learning Using Class Augmentation
    Matsumi, Susumu
    Yamada, Keiichi
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 196 - 201
  • [49] Few-Shot Learning on Graph Convolutional Network Based on Meta learning
    Liu X.-L.
    Feng L.
    Liao L.-X.
    Gong X.
    Su H.
    Wang J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (03): : 885 - 897
  • [50] Zero-Shot and Few-Shot Learning With Knowledge Graphs: A Comprehensive Survey
    Chen, Jiaoyan
    Geng, Yuxia
    Chen, Zhuo
    Pan, Jeff Z. Z.
    He, Yuan
    Zhang, Wen
    Horrocks, Ian
    Chen, Huajun
    PROCEEDINGS OF THE IEEE, 2023, 111 (06) : 653 - 685