Few-shot learning based on deep learning: A survey

被引:5
|
作者
Zeng, Wu [1 ]
Xiao, Zheng-ying [1 ]
机构
[1] Putian Univ, Engn Training Ctr, Putian 351100, Peoples R China
关键词
few-shot learning; deep learning; image classification; metric learning; meta-learning; data enhancement; TEXT;
D O I
10.3934/mbe.2024029
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, with the development of science and technology, powerful computing devices have been constantly developing. As an important foundation, deep learning (DL) technology has achieved many successes in multiple fields. In addition, the success of deep learning also relies on the support of large-scale datasets, which can provide models with a variety of images. The rich information in these images can help the model learn more about various categories of images, thereby improving the classification performance and generalization ability of the model. However, in real application scenarios, it may be difficult for most tasks to collect a large number of images or enough images for model training, which also restricts the performance of the trained model to a certain extent. Therefore, how to use limited samples to train the model with high performance becomes key. In order to improve this problem, the few-shot learning (FSL) strategy is proposed, which aims to obtain a model with strong performance through a small amount of data. Therefore, FSL can play its advantages in some real scene tasks where a large number of training data cannot be obtained. In this review, we will mainly introduce the FSL methods for image classification based on DL, which are mainly divided into four categories: methods based on data enhancement, metric learning, meta-learning and adding other tasks. First, we introduce some classic and advanced FSL methods in the order of categories. Second, we introduce some datasets that are often used to test the performance of FSL methods and the performance of some classical and advanced FSL methods on two common datasets. Finally, we discuss the current challenges and future prospects in this field.
引用
收藏
页码:679 / 711
页数:33
相关论文
共 50 条
  • [31] Co-Learning for Few-Shot Learning
    Rui Xu
    Lei Xing
    Shuai Shao
    Baodi Liu
    Kai Zhang
    Weifeng Liu
    [J]. Neural Processing Letters, 2022, 54 : 3339 - 3356
  • [32] Federated Few-Shot Learning with Adversarial Learning
    Fan, Chenyou
    Huang, Jianwei
    [J]. 2021 19TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2021,
  • [33] RankDNN: Learning to Rank for Few-Shot Learning
    Guo, Qianyu
    Gong Haotong
    Wei, Xujun
    Fu, Yanwei
    Yu, Yizhou
    Zhang, Wenqiang
    Ge, Weifeng
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 728 - 736
  • [34] Learning about few-shot concept learning
    Rastogi, Ananya
    [J]. NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11): : 698 - 698
  • [35] Meta-learning Approaches for Few-Shot Learning: A Survey of Recent Advances
    Gharoun, Hassan
    Momenifar, Fereshteh
    Chen, Fang
    Gandomi, Amir H.
    [J]. ACM Computing Surveys, 2024, 56 (12)
  • [36] Automated classification of polyps using deep learning architectures and few-shot learning
    Adrian Krenzer
    Stefan Heil
    Daniel Fitting
    Safa Matti
    Wolfram G. Zoller
    Alexander Hann
    Frank Puppe
    [J]. BMC Medical Imaging, 23
  • [37] Automated classification of polyps using deep learning architectures and few-shot learning
    Krenzer, Adrian
    Heil, Stefan
    Fitting, Daniel
    Matti, Safa
    Zoller, Wolfram G.
    Hann, Alexander
    Puppe, Frank
    [J]. BMC MEDICAL IMAGING, 2023, 23 (01)
  • [38] A Survey of Few-Shot Learning: An Effective Method for Intrusion Detection
    Duan, Ruixue
    Li, Dan
    Tong, Qiang
    Yang, Tao
    Liu, Xiaotong
    Liu, Xiulei
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [39] Few-shot learning for facial expression recognition: a comprehensive survey
    Chae-Lin Kim
    Byung-Gyu Kim
    [J]. Journal of Real-Time Image Processing, 2023, 20
  • [40] Few-shot learning for facial expression recognition: a comprehensive survey
    Kim, Chae-Lin
    Kim, Byung-Gyu
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (03)