Few-shot learning based on deep learning: A survey

被引:5
|
作者
Zeng, Wu [1 ]
Xiao, Zheng-ying [1 ]
机构
[1] Putian Univ, Engn Training Ctr, Putian 351100, Peoples R China
关键词
few-shot learning; deep learning; image classification; metric learning; meta-learning; data enhancement; TEXT;
D O I
10.3934/mbe.2024029
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, with the development of science and technology, powerful computing devices have been constantly developing. As an important foundation, deep learning (DL) technology has achieved many successes in multiple fields. In addition, the success of deep learning also relies on the support of large-scale datasets, which can provide models with a variety of images. The rich information in these images can help the model learn more about various categories of images, thereby improving the classification performance and generalization ability of the model. However, in real application scenarios, it may be difficult for most tasks to collect a large number of images or enough images for model training, which also restricts the performance of the trained model to a certain extent. Therefore, how to use limited samples to train the model with high performance becomes key. In order to improve this problem, the few-shot learning (FSL) strategy is proposed, which aims to obtain a model with strong performance through a small amount of data. Therefore, FSL can play its advantages in some real scene tasks where a large number of training data cannot be obtained. In this review, we will mainly introduce the FSL methods for image classification based on DL, which are mainly divided into four categories: methods based on data enhancement, metric learning, meta-learning and adding other tasks. First, we introduce some classic and advanced FSL methods in the order of categories. Second, we introduce some datasets that are often used to test the performance of FSL methods and the performance of some classical and advanced FSL methods on two common datasets. Finally, we discuss the current challenges and future prospects in this field.
引用
收藏
页码:679 / 711
页数:33
相关论文
共 50 条
  • [21] Universal Steganalysis Based on Few-shot Learning
    Li D.-Q.
    Fu Z.-J.
    Cheng X.
    Song C.
    Sun X.-M.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (10): : 3874 - 3890
  • [22] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694
  • [23] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [24] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [25] Iris recognition based on few-shot learning
    Lei, Songze
    Dong, Baihua
    Li, Yonggang
    Xiao, Feng
    Tian, Feng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [26] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [27] Interventional Few-Shot Learning
    Yue, Zhongqi
    Zhang, Hanwang
    Sun, Qianru
    Hua, Xian-Sheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] Few-Shot Lifelong Learning
    Mazumder, Pratik
    Singh, Pravendra
    Rai, Piyush
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2337 - 2345
  • [29] Learning about few-shot concept learning
    Ananya Rastogi
    Nature Computational Science, 2022, 2 : 698 - 698
  • [30] Co-Learning for Few-Shot Learning
    Xu, Rui
    Xing, Lei
    Shao, Shuai
    Liu, Baodi
    Zhang, Kai
    Liu, Weifeng
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 3339 - 3356