Theoretical and Computational Analysis of the Thermal Quasi-Geostrophic Model

被引:6
|
作者
Crisan, D. [1 ]
Holm, D. D. [1 ]
Luesink, E. [2 ]
Mensah, P. R. [1 ]
Pan, W. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Twente, Dept Math, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Oceanography; Bathymetry; Potential vorticity; Analysis of partial differential equations; Finite element methods; Rossby waves; OCEAN MODEL; EULER; EQUATIONS; VARIABILITY; DYNAMICS;
D O I
10.1007/s00332-023-09943-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version a-TQG converge to solutions of TQG as its smoothing parameter a ? 0 and we obtain blow-up criteria for the a-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of a-TQG solutions to TQG solutions as a ? 0, for example, simulations in appropriate GFD regimes.
引用
收藏
页数:58
相关论文
共 50 条
  • [41] Predictability of quasi-geostrophic turbulence
    Merryfield, WJ
    Holloway, G
    JOURNAL OF FLUID MECHANICS, 2002, 465 : 191 - 212
  • [42] QUASI-GEOSTROPHIC LEE CYCLOGENESIS
    SCHAR, C
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1990, 47 (24) : 3044 - 3066
  • [43] THE QUASI-GEOSTROPHIC WIND APPROXIMATION
    SELLICK, NP
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1952, 78 (336) : 266 - 267
  • [44] A quasi-geostrophic coupled model (Q-GCM)
    Hogg, AM
    Dewar, WK
    Killworth, PD
    Blundell, JR
    MONTHLY WEATHER REVIEW, 2003, 131 (10) : 2261 - 2278
  • [46] STOCHASTIC QUASI-GEOSTROPHIC EQUATION
    Roeckner, Michael
    Zhu, Rongchan
    Zhu, Xiangchan
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2012, 15 (01)
  • [47] QUASI-GEOSTROPHIC DYNAMICS OF THE TROPOPAUSE
    JUCKES, M
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1994, 51 (19) : 2756 - 2768
  • [48] ON NONTRADITIONAL QUASI-GEOSTROPHIC EQUATIONS
    Lucas, Carine
    McWilliams, James C.
    Rousseau, Antoine
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 427 - 442
  • [49] A BAROCLINIC QUASI-GEOSTROPHIC MODEL FOR THE ANALYSIS OF SYNOPTIC EDDIES IN AN OPEN OCEAN REGION
    KAMENKOVICH, VM
    LARICHEV, VD
    KHARKOV, BV
    OKEANOLOGIYA, 1981, 21 (06): : 949 - 959
  • [50] Stability Analysis of the Supercritical Surface Quasi-Geostrophic Equation
    Jia, Yan
    Gui, Xingguo
    Dong, Bo-Qing
    ABSTRACT AND APPLIED ANALYSIS, 2013,