Theoretical and Computational Analysis of the Thermal Quasi-Geostrophic Model

被引:6
|
作者
Crisan, D. [1 ]
Holm, D. D. [1 ]
Luesink, E. [2 ]
Mensah, P. R. [1 ]
Pan, W. [1 ]
机构
[1] Imperial Coll, Dept Math, London SW7 2AZ, England
[2] Univ Twente, Dept Math, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Oceanography; Bathymetry; Potential vorticity; Analysis of partial differential equations; Finite element methods; Rossby waves; OCEAN MODEL; EULER; EQUATIONS; VARIABILITY; DYNAMICS;
D O I
10.1007/s00332-023-09943-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version a-TQG converge to solutions of TQG as its smoothing parameter a ? 0 and we obtain blow-up criteria for the a-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of a-TQG solutions to TQG solutions as a ? 0, for example, simulations in appropriate GFD regimes.
引用
收藏
页数:58
相关论文
共 50 条
  • [21] Traditional quasi-geostrophic modes and surface quasi-geostrophic solutions in the Southwestern Atlantic
    Rocha, Cesar B.
    Tandon, Amit
    da Silveira, Ilson C. A.
    Lima, Jose Antonio M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (05) : 2734 - 2745
  • [22] Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply
    Schertzer, D.
    Tchiguirinskaia, I.
    Lovejoy, S.
    Tuck, A. F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (01) : 327 - 336
  • [23] THE DEVELOPMENT OF A QUASI-GEOSTROPHIC REGIONAL MODEL .6.
    DAMRATH, U
    ENKE, W
    HERZOG, HJ
    MEYER, A
    ZEITSCHRIFT FUR METEOROLOGIE, 1981, 31 (04): : 203 - 219
  • [24] Refinements on the quasi-geostrophic wire-vortex model
    Miyazaki, T
    Taira, H
    Niwa, T
    Takahashi, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (01) : 359 - 367
  • [25] A multiscale dynamo model driven by quasi-geostrophic convection
    Calkins, Michael A.
    Julien, Keith
    Tobias, Steven M.
    Aurnou, Jonathan M.
    JOURNAL OF FLUID MECHANICS, 2015, 780 : 143 - 166
  • [26] Roughness-induced effects on the quasi-geostrophic model
    Bresch, D
    Gérard-Varet, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (01) : 81 - 119
  • [27] Quasi-geostrophic dynamo theory
    Calkins, Michael A.
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2018, 276 : 182 - 189
  • [28] ON STABILITY OF QUASI-GEOSTROPHIC FLOW
    BLUMEN, W
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1968, 25 (05) : 929 - &
  • [29] ON DEEP QUASI-GEOSTROPHIC THEORY
    BANNON, PR
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1989, 46 (22) : 3457 - 3463
  • [30] SINGULAR FRONT FORMATION IN A MODEL FOR QUASI-GEOSTROPHIC FLOW
    CONSTANTIN, P
    MAJDA, AJ
    TABAK, EG
    PHYSICS OF FLUIDS, 1994, 6 (01) : 9 - 11