Oceanography;
Bathymetry;
Potential vorticity;
Analysis of partial differential equations;
Finite element methods;
Rossby waves;
OCEAN MODEL;
EULER;
EQUATIONS;
VARIABILITY;
DYNAMICS;
D O I:
10.1007/s00332-023-09943-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This work involves theoretical and numerical analysis of the thermal quasi-geostrophic (TQG) model of submesoscale geophysical fluid dynamics (GFD). Physically, the TQG model involves thermal geostrophic balance, in which the Rossby number, the Froude number and the stratification parameter are all of the same asymptotic order. The main analytical contribution of this paper is to construct local-in-time unique strong solutions for the TQG model. For this, we show that solutions of its regularised version a-TQG converge to solutions of TQG as its smoothing parameter a ? 0 and we obtain blow-up criteria for the a-TQG model. The main contribution of the computational analysis is to verify the rate of convergence of a-TQG solutions to TQG solutions as a ? 0, for example, simulations in appropriate GFD regimes.
机构:
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, GermanyHelmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, Germany
Labsch, Henriette
Handorf, Doerthe
论文数: 0引用数: 0
h-index: 0
机构:
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, GermanyHelmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, Germany
Handorf, Doerthe
Dethloff, Klaus
论文数: 0引用数: 0
h-index: 0
机构:
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, GermanyHelmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, Germany
Dethloff, Klaus
Kurgansky, Michael V.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Obukhov Inst Atmospher Phys, Moscow 1190117, RussiaHelmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Res Unit Potsdam, D-14473 Potsdam, Germany