An Efficient Parameter Optimization of Maximum Correntropy Criterion

被引:1
|
作者
Shi, Long [1 ,2 ]
Shen, Lu [3 ]
Chen, Badong [4 ]
机构
[1] Sch Comp & Artificial Intelligence, Chengdu 611130, Peoples R China
[2] Southwestern Univ Finance & Econ, Financial Intelligence & Financial Engn Key Lab Si, Chengdu 611130, Peoples R China
[3] Univ York, Dept Elect Engn, York YO10 5DD, England
[4] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel; Optimization; Signal processing algorithms; Market research; Convergence; Attenuation; Heuristic algorithms; Convergence behavior; constrained parameter optimization; kernel width; maximum correntropy criterion; tracking capability; M-ESTIMATE ALGORITHMS; FILTERS;
D O I
10.1109/LSP.2023.3273174
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The maximum correntropy criterion (MCC) algorithm depends upon two fundamental parameters, i.e., step-size and kernel width. Previous studies of parameter optimization in the MCC mainly focus on a single parameter (mainly the kernel width), lacking optimization research concerning both parameters. To this end, this letter investigates a novel optimization scheme simultaneously involving step-size and kernel width. The optimization framework is based on making the power of weight error vector undergo the steepest attenuation. Under the premise of maintaining the same evolutionary trend for time-varying step-size and kernel width, we formulate a constrained parameter optimization problem, where the step-size is subject to a kernel width induced constraint. By taking this approach, the original bivariate optimization can be transformed into a univariate optimization problem, which facilitates optimization solving. We further develop an existing reset scheme to make it suitable for kernel width to ensure a good tracking capability. In addition, we investigate the convergence behavior of the optimized algorithm. Simulation results demonstrate that the developed optimization scheme is beneficial for performance improvement, and the resulting algorithm outperforms some state-of-art MCC-based algorithms.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [21] Performance Evaluation of the Maximum Correntropy Criterion in Identification Systems
    Guimaraes, Joao P. F.
    Fontes, Aluisio I. R.
    Rigo, Joilson B. A.
    Silveira, Luiz F. Q.
    Martins, Allan M.
    [J]. PROCEEDINGS OF THE 2016 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2016, : 110 - 113
  • [22] Diffusion Kalman filter by using maximum correntropy criterion
    Li, Wenling
    Xiong, Kai
    Liu, Yang
    [J]. 2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 203 - 208
  • [23] Broad Learning System Based on Maximum Correntropy Criterion
    Zheng, Yunfei
    Chen, Badong
    Wang, Shiyuan
    Wang, Weiqun
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 3083 - 3097
  • [24] Robust Tensor Factorization Using Maximum Correntropy Criterion
    Zhang, Miaohua
    Gao, Yongsheng
    Sun, Changming
    La Salle, John
    Liang, Junli
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 4184 - 4189
  • [25] Learning with the Maximum Correntropy Criterion Induced Losses for Regression
    Feng, Yunlong
    Huang, Xiaolin
    Shi, Lei
    Yang, Yuning
    Suykens, Johan A. K.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 993 - 1034
  • [26] Robust Information Filter Based on Maximum Correntropy Criterion
    Wang, Yidi
    Zheng, Wei
    Sun, Shouming
    Li, Li
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (05) : 1124 - +
  • [27] Extended Kalman Filter under Maximum Correntropy Criterion
    Liu, Xi
    Qu, Hua
    Zhao, Jihong
    Chen, Badong
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1733 - 1737
  • [28] Robust Multidimensional Scaling Using a Maximum Correntropy Criterion
    Mandanas, Fotios D.
    Kotropoulos, Constantine L.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 919 - 932
  • [29] ADAPTIVE CONVEX COMBINATION OF KERNEL MAXIMUM CORRENTROPY CRITERION
    Shi, Long
    Yang, Yunchen
    [J]. 2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [30] ROBUST PRINCIPAL CURVES BASED ON MAXIMUM CORRENTROPY CRITERION
    Li, Chun-Guo
    Hu, Bao-Gang
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 615 - 620