Performance Evaluation of the Maximum Correntropy Criterion in Identification Systems

被引:0
|
作者
Guimaraes, Joao P. F. [1 ]
Fontes, Aluisio I. R. [1 ]
Rigo, Joilson B. A. [2 ]
Silveira, Luiz F. Q. [2 ]
Martins, Allan M. [2 ]
机构
[1] Fed Inst Rio Grande do Norte, Comp Engn, Natal, RN, Brazil
[2] Fed Inst Rio Grande do Norte, Elect Engn, Natal, RN, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The System identification explores ways to obtain mathematical models of an unknown system. However, as a result from the intrinsic random nature of system or from the environment noise, it is very hard to find a perfect mathematical representation of a real system. This paper aims to evaluate the Maximum Correntropy Criterion (MCC) performance using the gradient descent and the Fixed-Point. Both methods were compared in different noise scenarios and their behavior with different system models. The importance of the free parameters was also studied on both methods. The results show that the fixed-point has a better performance and are less noise sensitive.
引用
收藏
页码:110 / 113
页数:4
相关论文
共 50 条
  • [1] Performance evaluation of the maximum complex correntropy criterion with adaptive kernel width update
    Aquino, Manoel B. L.
    Guimaraes, Joao P. F.
    Linhares, Leandro L. S.
    Fontes, Aluisio I. R.
    Martins, Allan M.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2019, 2019 (01)
  • [2] Performance evaluation of the maximum complex correntropy criterion with adaptive kernel width update
    Manoel B. L. Aquino
    João P. F. Guimarães
    Leandro L. S. Linhares
    Aluísio I. R. Fontes
    Allan M. Martins
    [J]. EURASIP Journal on Advances in Signal Processing, 2019
  • [3] ADMM for Maximum Correntropy Criterion
    Zhu, Fei
    Halimi, Abderrahim
    Honeine, Paul
    Chen, Badong
    Zheng, Nanning
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1420 - 1427
  • [4] Maximum Correntropy Criterion with Distributed Method
    Xie, Fan
    Hu, Ting
    Wang, Shixu
    Wang, Baobin
    [J]. MATHEMATICS, 2022, 10 (03)
  • [5] Maximum Correntropy Criterion With Variable Center
    Chen, Badong
    Wang, Xin
    Li, Yingsong
    Principe, Jose C.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (08) : 1212 - 1216
  • [6] A Proportionate Normalized Maximum Correntropy Criterion Algorithm with Correntropy Induced Metric Constraint for Identifying Sparse Systems
    Li, Yingsong
    Wang, Yanyan
    Sun, Laijun
    [J]. SYMMETRY-BASEL, 2018, 10 (12):
  • [7] The Maximum Correntropy Criterion-Based Identification for Fractional-Order Systems under Stable Distribution Noises
    Lu, Yao
    [J]. MATHEMATICS, 2023, 11 (20)
  • [8] A MAXIMUM CORRENTROPY CRITERION FOR ROBUST MULTIDIMENSIONAL SCALING
    Mandanas, Fotios
    Kotropoulos, Constantine
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1906 - 1910
  • [9] An Efficient Parameter Optimization of Maximum Correntropy Criterion
    Shi, Long
    Shen, Lu
    Chen, Badong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 538 - 542
  • [10] Maximum Correntropy Criterion for Robust Face Recognition
    He, Ran
    Zheng, Wei-Shi
    Hu, Bao-Gang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1561 - 1576