An Efficient Parameter Optimization of Maximum Correntropy Criterion

被引:1
|
作者
Shi, Long [1 ,2 ]
Shen, Lu [3 ]
Chen, Badong [4 ]
机构
[1] Sch Comp & Artificial Intelligence, Chengdu 611130, Peoples R China
[2] Southwestern Univ Finance & Econ, Financial Intelligence & Financial Engn Key Lab Si, Chengdu 611130, Peoples R China
[3] Univ York, Dept Elect Engn, York YO10 5DD, England
[4] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel; Optimization; Signal processing algorithms; Market research; Convergence; Attenuation; Heuristic algorithms; Convergence behavior; constrained parameter optimization; kernel width; maximum correntropy criterion; tracking capability; M-ESTIMATE ALGORITHMS; FILTERS;
D O I
10.1109/LSP.2023.3273174
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The maximum correntropy criterion (MCC) algorithm depends upon two fundamental parameters, i.e., step-size and kernel width. Previous studies of parameter optimization in the MCC mainly focus on a single parameter (mainly the kernel width), lacking optimization research concerning both parameters. To this end, this letter investigates a novel optimization scheme simultaneously involving step-size and kernel width. The optimization framework is based on making the power of weight error vector undergo the steepest attenuation. Under the premise of maintaining the same evolutionary trend for time-varying step-size and kernel width, we formulate a constrained parameter optimization problem, where the step-size is subject to a kernel width induced constraint. By taking this approach, the original bivariate optimization can be transformed into a univariate optimization problem, which facilitates optimization solving. We further develop an existing reset scheme to make it suitable for kernel width to ensure a good tracking capability. In addition, we investigate the convergence behavior of the optimized algorithm. Simulation results demonstrate that the developed optimization scheme is beneficial for performance improvement, and the resulting algorithm outperforms some state-of-art MCC-based algorithms.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [1] ADMM for Maximum Correntropy Criterion
    Zhu, Fei
    Halimi, Abderrahim
    Honeine, Paul
    Chen, Badong
    Zheng, Nanning
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1420 - 1427
  • [2] Channel Parameter Estimation in the Presence of Phase Noise Based on Maximum Correntropy Criterion
    Alizadeh, Amir
    Pakravan, Saeid
    Hodtani, Ghosheh Abed
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024,
  • [3] Maximum Correntropy Criterion with Distributed Method
    Xie, Fan
    Hu, Ting
    Wang, Shixu
    Wang, Baobin
    [J]. MATHEMATICS, 2022, 10 (03)
  • [4] Maximum Correntropy Criterion With Variable Center
    Chen, Badong
    Wang, Xin
    Li, Yingsong
    Principe, Jose C.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (08) : 1212 - 1216
  • [5] An Efficient Distributed Kalman Filter Over Sensor Networks With Maximum Correntropy Criterion
    Hu, Chen
    Chen, Badong
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 433 - 444
  • [6] A MAXIMUM CORRENTROPY CRITERION FOR ROBUST MULTIDIMENSIONAL SCALING
    Mandanas, Fotios
    Kotropoulos, Constantine
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1906 - 1910
  • [7] Maximum Correntropy Criterion for Robust Face Recognition
    He, Ran
    Zheng, Wei-Shi
    Hu, Bao-Gang
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1561 - 1576
  • [8] MAXIMUM CORRENTROPY CRITERION FOR DISCRIMINATIVE DICTIONARY LEARNING
    Hao, Pengyi
    Kamata, Sei-ichiro
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4325 - 4329
  • [9] Kernel Adaptive Filtering with Maximum Correntropy Criterion
    Zhao, Songlin
    Chen, Badong
    Principe, Jose C.
    [J]. 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2012 - 2017
  • [10] A ROBUST MAXIMUM CORRENTROPY CRITERION FOR DICTIONARY LEARNING
    Loza, Carlos A.
    Principe, Jose C.
    [J]. 2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,