Overview of Machine Learning-Enabled Battery State Estimation Methods

被引:2
|
作者
Zhuge, Yingjian [1 ]
Yang, Hengzhao [1 ]
Wang, Haoyu [1 ,2 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Energy Efficient & Custom A, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; deep learning; state of charge (SOC); state of health (SOH); LITHIUM-ION BATTERIES; OF-CHARGE ESTIMATION; OPEN-CIRCUIT VOLTAGE; NEURAL-NETWORK; HEALTH ESTIMATION; SOC ESTIMATION; ONLINE STATE; CAPACITY; MODEL; PREDICTION;
D O I
10.1109/APEC43580.2023.10131605
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To ensure safe usage and robust performance of energy storage batteries, accurate state-of-charge (SOC) and state-of-health (SOH) estimations are required. Due to recent breakthroughs in machine learning and artificial intelligence methods, data-driven methods have attracted increased attention. This paper reports state-of-the-art research progress in machine learning-enabled methods for SOC and SOH estimations. Comprehensive comparisons are made in terms of the dataset, estimation accuracy, and battery type to provide a clear picture for SOC and SOH estimation. Moreover, the challenges and research opportunities on future SOC and SOH estimation are disclosed.
引用
收藏
页码:3028 / 3035
页数:8
相关论文
共 50 条
  • [31] Hybrid machine learning-enabled adaptive welding speed control
    Kershaw, Joseph
    Yu, Rui
    Zhang, Yuming
    Wang, Peng
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 71 : 374 - 383
  • [32] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [33] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [34] Machine Learning-Enabled Joint Codebook Design and Beam Selection
    Liang, Fengyu
    Cai, Yunlong
    2024 19TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS, ISWCS 2024, 2024, : 733 - 738
  • [35] A machine learning-enabled intelligent application for public health and safety
    Zhang Yong
    Zhang Xiaoming
    Alshehri, Mohammad Dahman
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14551 - 14564
  • [36] Machine learning-enabled quantitative ultrasound techniques for tissue differentiation
    Thomson, Hannah
    Yang, Shufan
    Cochran, Sandy
    JOURNAL OF MEDICAL ULTRASONICS, 2022, 49 (04) : 517 - 528
  • [37] Practical Considerations for Machine Learning-Enabled Discoveries in Spatial Transcriptomics
    Lee, Alex J.
    Cahill, Robert
    Abbasi-Asl, Reza
    GEN BIOTECHNOLOGY, 2024, 3 (03): : 130 - 135
  • [38] EspalomaCharge: Machine Learning-Enabled Ultrafast Partial Charge Assignment
    Wang, Yuanqing
    Pulido, Ivan
    Takaba, Kenichiro
    Kaminow, Benjamin
    Scheen, Jenke
    Wang, Lily
    Chodera, John D.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (20): : 4160 - 4167
  • [39] Powder Bed Fusion via Machine Learning-Enabled Approaches
    Chadha, Utkarsh
    Selvaraj, Senthil Kumaran
    Abraham, Abel Saji
    Khanna, Mayank
    Mishra, Anirudh
    Sachdeva, Isha
    Kashyap, Swati
    Dev, S. Jithin
    Swatish, R. Srii
    Joshi, Ayushma
    Anand, Simar Kaur
    Adefris, Addisalem
    Kumar, R. Lokesh
    Kaliappan, Jayakumar
    Dhanalakshmi, S.
    COMPLEXITY, 2023, 2023
  • [40] Machine learning-enabled prediction of antimicrobial resistance in foodborne pathogens
    Yun, Bona
    Liao, Xinyu
    Feng, Jinsong
    Ding, Tian
    CYTA-JOURNAL OF FOOD, 2024, 22 (01)