A generalized Cheeger inequality

被引:1
|
作者
Koutis, Ioannis [1 ]
Miller, Gary [2 ]
Peng, Richard [3 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA USA
[3] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON, Canada
基金
美国国家科学基金会;
关键词
Spectral graph theory; Generalized cuts; Cheeger inequality; ISOPERIMETRIC-INEQUALITIES;
D O I
10.1016/j.laa.2023.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized conductance phi(G, H) between two weighted graphs G and H on the same vertex set V is defined as the ratio phi(G, H) = min S subset of V capG(S, S) capH(S, S over line ), where capG(S, S) is the total weight of the edges crossing from vertex set S subset of V to S over line = V - S. We show that the minimum generalized eigenvalue lambda(LG, LH) of the pair of Laplacians LG and LH satisfies phi(G, H) > lambda(LG, LH) > phi(G, H)phi(G)/16, where phi(G) is the standard conductance of G. A generalized cut that meets this bound can be obtained from the generalized eigenvector corresponding to lambda(LG, LH).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 50 条
  • [21] ECONOMICAL TORIC SPINES VIA CHEEGER'S INEQUALITY
    Alon, Noga
    Klartag, Bo'az
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2009, 1 (02) : 101 - 111
  • [22] A CHEEGER-BUSER-TYPE INEQUALITY ON CW COMPLEXES
    Schneeberger, Gregoire
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2023, 12 (03) : 197 - 204
  • [23] Variant of the Cheeger's inequality for finite Markov chains
    Miclo, L.
    Probability and Statistics, 2
  • [24] Boundary variation method for the generalized Cheeger problem
    Ionescu, Ioan R.
    Lupascu-Stamate, Oana
    APPLIED NUMERICAL MATHEMATICS, 2019, 140 : 199 - 214
  • [25] ON GENERALIZED CHEEGER-GROMOLL METRIC AND HARMONICITY
    Ben Otmane, R. Kada
    Zagane, A.
    Djaa, M.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 629 - 645
  • [26] Flat pairing and generalized Cheeger–Simons characters
    Fabio Ferrari Ruffino
    Journal of Homotopy and Related Structures, 2017, 12 : 143 - 168
  • [27] On the Cheeger Inequality in Carnot-Carathéodory Spaces
    Kluitenberg, Martijn
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (03)
  • [28] Cheeger's constant in balls and isoperimetric inequality on Riemannian manifolds
    Garcia Leon, Joel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) : 4445 - 4452
  • [29] A Faber-Krahn Inequality for the Cheeger Constant of N -gons
    Bucur, Dorin
    Fragala, Ilaria
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 88 - 117
  • [30] A CHEEGER-LIKE INEQUALITY FOR COEXACT 1-FORMS
    Boulanger, A.
    Courtois, G.
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (18) : 3593 - 3641