Flat pairing and generalized Cheeger–Simons characters

被引:0
|
作者
Fabio Ferrari Ruffino
机构
[1] Universidade Federal de São Carlos,Departamento de Matemática
关键词
Generalized cohomology theories; differential cohomology; Cheeger-Simons characters;
D O I
暂无
中图分类号
学科分类号
摘要
Let h∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{\bullet }$$\end{document} be a multiplicative cohomology theory, h∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\bullet }$$\end{document} its dual homology theory and h^∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{h}^{\bullet }$$\end{document} a differential refinement. We first construct the natural pairing between h∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{\bullet }$$\end{document} and the flat part of h^∙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{h}^{\bullet }$$\end{document}, generalizing the holonomy of a flat Deligne cohomology class. Then, in order to generalize the holonomy of any Deligne cohomology class, we define the generalized Cheeger–Simons characters. The latter are functions from suitably defined differential cycles to the cohomology ring of the point, such that the value on a trivial cycle only depends on the curvature.
引用
收藏
页码:143 / 168
页数:25
相关论文
共 50 条