A generalized Cheeger inequality

被引:1
|
作者
Koutis, Ioannis [1 ]
Miller, Gary [2 ]
Peng, Richard [3 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[2] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA USA
[3] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON, Canada
基金
美国国家科学基金会;
关键词
Spectral graph theory; Generalized cuts; Cheeger inequality; ISOPERIMETRIC-INEQUALITIES;
D O I
10.1016/j.laa.2023.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized conductance phi(G, H) between two weighted graphs G and H on the same vertex set V is defined as the ratio phi(G, H) = min S subset of V capG(S, S) capH(S, S over line ), where capG(S, S) is the total weight of the edges crossing from vertex set S subset of V to S over line = V - S. We show that the minimum generalized eigenvalue lambda(LG, LH) of the pair of Laplacians LG and LH satisfies phi(G, H) > lambda(LG, LH) > phi(G, H)phi(G)/16, where phi(G) is the standard conductance of G. A generalized cut that meets this bound can be obtained from the generalized eigenvector corresponding to lambda(LG, LH).(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 152
页数:14
相关论文
共 50 条
  • [31] The Interplay Between Dynamics and Networks: Centrality, Communities, and Cheeger Inequality
    Ghosh, Rumi
    Teng, Shang-Hua
    Lerman, Kristina
    Yan, Xiaoran
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1406 - 1415
  • [32] Flat pairing and generalized Cheeger-Simons characters
    Ruffino, Fabio Ferrari
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2017, 12 (01) : 143 - 168
  • [33] Generalized Cheeger-Gromoll metrics and the Hopf map
    Benyounes, Michele
    Loubeau, Eric
    Nishikawa, Seiki
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (04) : 555 - 566
  • [34] Hermitian Laplacians and a Cheeger Inequality for the Max-2-Lin Problem!
    Li, Huan
    Sun, He
    Zanetti, Luca
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [35] Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions
    Jiang, Renjin
    Koskela, Pekka
    Yang, Dachun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 583 - 598
  • [36] Relative differential cohomology and generalized Cheeger-Simons characters
    Ruffino, Fabio Ferrari
    Rocha Barriga, Juan Carlos
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (04) : 921 - 1005
  • [37] GENERALIZED INEQUALITY
    COURT, NA
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (05): : 539 - &
  • [38] A Cheeger inequality of a distance regular graph using Green's function
    Kim, Gil Chun
    Lee, Yoonjin
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2337 - 2347
  • [39] On the generalized Cheeger problem and an application to 2d strips
    Pratelli, Aldo
    Saracco, Giorgio
    REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 219 - 237
  • [40] A generalized reverse inequality of the Cordes inequality
    Tominaga, Masaru
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (02): : 221 - 227