Analysis of an Embedded-Hybridizable Discontinuous Galerkin Method for Biot's Consolidation Model

被引:2
|
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Baylor Univ, Dept Math, Waco, TX 76706 USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Biot's consolidation model; Poroelasticity; Discontinuous Galerkin; Finite element methods; Hybridization; FINITE-ELEMENT-METHOD; ELASTIC WAVES; POROUS-MEDIA; POROELASTICITY; LOCKING; INEQUALITIES; PROPAGATION; FORMULATION; DIFFUSION; STABILITY;
D O I
10.1007/s10915-023-02373-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an embedded-hybridizable discontinuous Galerkin finite element method for the total pressure formulation of the quasi-static poroelasticity model. Although the displacement and the Darcy velocity are approximated by discontinuous piece-wise polynomials, H(div)-conformity of these unknowns is enforced by Lagrange multipliers. The semi-discrete problem is shown to be stable and the fully discrete problem is shown to be well-posed. Additionally, space-time a priori error estimates are derived, and confirmed by numerical examples, that show that the proposed discretization is free of volumetric locking.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A hybridizable discontinuous Galerkin method for a class of fractional boundary value problems
    Karaaslan, Mehmet Fatih
    Celiker, Fatih
    Kurulay, Muhammet
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 20 - 27
  • [42] ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION
    Chen, Gang
    Han, Daozhi
    Singler, John R.
    Zhang, Yangwen
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 83 - 109
  • [43] A Weighted Hybridizable Discontinuous Galerkin Method for Drift-Diffusion Problems
    Wenyu Lei
    Stefano Piani
    Patricio Farrell
    Nella Rotundo
    Luca Heltai
    Journal of Scientific Computing, 2024, 99
  • [44] A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction
    Sheldona, Jason P.
    Miller, Scott T.
    Pitt, Jonathan S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 326 : 91 - 114
  • [45] A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Chen, Huangxin
    Lu, Peipei
    Xu, Xuejun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (04) : 2166 - 2188
  • [46] A high order unfitted hybridizable discontinuous Galerkin method for linear elasticity
    Cardenas, Juan Manuel
    Solano, Manuel
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 945 - 979
  • [47] MANYCORE PARALLEL COMPUTING FOR A HYBRIDIZABLE DISCONTINUOUS GALERKIN NESTED MULTIGRID METHOD
    Fabien, Maurice S.
    Knepley, Matthew G.
    Mills, Richard T.
    Riviere, Beatrice M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : C73 - C96
  • [48] A Hybridizable Discontinuous Galerkin Method for Magnetic Advection-Diffusion Problems
    Wang, Jindong
    Wu, Shuonan
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [49] A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem
    Cesmelioglu, Aycil
    Lee, Jeonghun J.
    Rhebergen, Sander
    Tabaku, Dorisa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 165 : 180 - 195
  • [50] A hybridizable discontinuous Galerkin method for solving nonlocal optical response models
    Li, Liang
    Lanteri, Stephane
    Mortensen, N. Asger
    Wubs, Martijn
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 219 : 99 - 107