CONSTRUCTION OF NEW AFFINE AND NON-AFFINE FRACTAL INTERPOLATION FUNCTIONS THROUGH THE WEYL-MARCHAUD DERIVATIVE

被引:2
|
作者
Priyanka, T. M. C. [1 ]
Gowrisankar, A. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, Tamil Nadu, India
关键词
Iterated Function System; Fractal Interpolation Function; Weyl-Marchaud Fractional Derivative; Function Scaling Factors; FRACTIONAL CALCULUS;
D O I
10.1142/S0218348X2350041X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the Weyl-Marchaud fractional derivative of affine and non-affine fractal interpolation functions with function scaling factors. The dependence of fractal interpolation function on the scaling factor is mainly explored by choosing the scaling factor as a function instead of a constant. In addition, for some fixed order v, the Weyl-Marchaud fractional derivative of a linear fractal interpolation function is estimated by predefining the fractional derivative values at the end points. Similarly, the Weyl-Marchaud fractional derivative of a a-fractal function is investigated for some fixed order v with additional constraints on the derivative of prescribed continuous function and base function.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Riemann–Liouville fractional integral of non-affine fractal interpolation function and its fractional operator
    T. M. C. Priyanka
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2021, 230 : 3789 - 3805
  • [22] Box dimension of generalized affine fractal interpolation functions
    Jiang, Lai
    Ruan, Huo-Jun
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2023, 10 (3-4) : 279 - 302
  • [23] ON THE BOUNDS OF SCALING FACTORS OF AFFINE FRACTAL INTERPOLATION FUNCTIONS
    Hsieh, Liang-Yu
    Luor, Dah-Chin
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (04): : 1321 - 1330
  • [24] New ILC algorithms with improved convergence for a class of non-affine functions
    Xu, JX
    Ji, Q
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 660 - 665
  • [25] On the construction of non-affine jump-diffusion models
    Gapeev, Pavel V.
    Stoev, Yavor I.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (05) : 900 - 918
  • [26] Implementation of enhanced shape functions for non-affine elements
    Andriamaro, Gaelle
    Davydov, Oleg
    Simkin, John
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2015, 9 (02) : 184 - 188
  • [27] Riemann-Liouville fractional integral of non-affine fractal interpolation function and its fractional operator
    Priyanka, T. M. C.
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3789 - 3805
  • [28] Weyl–Marchaud fractional derivative of a vector valued fractal interpolation function with function contractivity factors
    T. M. C. Priyanka
    A. Agathiyan
    A. Gowrisankar
    [J]. The Journal of Analysis, 2023, 31 : 657 - 689
  • [29] Order-Reduction of Fields-Level Models with Affine and Non-Affine Parameters by Interpolation of Subspaces
    Burgard, S.
    Farle, O.
    Klis, D.
    Dyczij-Edlinger, R.
    [J]. IFAC PAPERSONLINE, 2015, 48 (01): : 170 - 175
  • [30] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770