Branching Brownian motion conditioned on small maximum

被引:2
|
作者
Chen, Xinxin [1 ]
He, Hui [1 ]
Mallein, Bastien [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Sorbonne Paris Nord, LAGA, UMR 7539, F-93430 Villetaneuse, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2023年 / 20卷 / 02期
关键词
Branching Brownian motion; lower deviation probability; extremal process; point process; ENTROPIC REPULSION; EQUATION; CONVERGENCE; LAW;
D O I
10.30757/ALEA.v20-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a standard binary branching Brownian motion on the real line, it is known that the typical value of the maximal position M-t among all particles alive at time t is m(t) + Theta(1) with m(t) = root 2t - 3/2 root 2 log t. Further, it is proved independently in Aidekon et al. (2013) and Arguin et al. (2013) that the branching Brownian motion shifted by m(t) (or M-t) converges in law to some decorated Poisson point process. The goal of this work is to study the branching Brownian motion conditioned on M-t << m(t). We give a complete description of the limiting extremal process conditioned on {M-t <= root 2 alpha t} with alpha < 1, which reveals a phase transition at alpha = 1 - root 2. We also verify the conjecture of Derrida and Shi (2017b) on the precise asymptotic behaviour of P(M-t <= root 2 alpha t) for alpha < 1.
引用
收藏
页码:905 / 940
页数:36
相关论文
共 50 条
  • [31] The unscaled paths of branching Brownian motion
    Harris, Simon C.
    Roberts, Matthew I.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (02): : 579 - 608
  • [32] The fixed points of branching Brownian motion
    Chen, Xinxin
    Garban, Christophe
    Shekhar, Atul
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (3-4) : 839 - 884
  • [33] Spatial extent of branching Brownian motion
    Ramola, Kabir
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW E, 2015, 91 (04)
  • [34] Brownian motion conditioned to stay in a cone
    Garbit, Rodolphe
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2009, 49 (03): : 573 - 592
  • [35] Conditioned Brownian motion and multipliers into SL∞
    Jones, PW
    Müller, PFX
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (02) : 319 - 379
  • [36] THE LIFETIME OF CONDITIONED BROWNIAN-MOTION
    CRANSTON, M
    MCCONNELL, TR
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01): : 1 - 11
  • [37] CONDITIONED SUPER-BROWNIAN MOTION
    OVERBECK, L
    PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (04) : 545 - 570
  • [38] Integrated Brownian motion, conditioned to be positive
    Groeneboom, P
    Jongbloed, G
    Wellner, JA
    ANNALS OF PROBABILITY, 1999, 27 (03): : 1283 - 1303
  • [39] On the lifetime of a conditioned Brownian motion in the ball
    Dall'Acqua, Anna
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 389 - 405
  • [40] Rate of escape of conditioned Brownian motion
    Collin, Orphee
    Comets, Francis
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27