Branching Brownian motion conditioned on small maximum

被引:2
|
作者
Chen, Xinxin [1 ]
He, Hui [1 ]
Mallein, Bastien [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Sorbonne Paris Nord, LAGA, UMR 7539, F-93430 Villetaneuse, France
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2023年 / 20卷 / 02期
关键词
Branching Brownian motion; lower deviation probability; extremal process; point process; ENTROPIC REPULSION; EQUATION; CONVERGENCE; LAW;
D O I
10.30757/ALEA.v20-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a standard binary branching Brownian motion on the real line, it is known that the typical value of the maximal position M-t among all particles alive at time t is m(t) + Theta(1) with m(t) = root 2t - 3/2 root 2 log t. Further, it is proved independently in Aidekon et al. (2013) and Arguin et al. (2013) that the branching Brownian motion shifted by m(t) (or M-t) converges in law to some decorated Poisson point process. The goal of this work is to study the branching Brownian motion conditioned on M-t << m(t). We give a complete description of the limiting extremal process conditioned on {M-t <= root 2 alpha t} with alpha < 1, which reveals a phase transition at alpha = 1 - root 2. We also verify the conjecture of Derrida and Shi (2017b) on the precise asymptotic behaviour of P(M-t <= root 2 alpha t) for alpha < 1.
引用
收藏
页码:905 / 940
页数:36
相关论文
共 50 条
  • [21] Supercritical branching Brownian motion with catalytic branching at the origin
    Li Wang
    Guowei Zong
    Science China Mathematics, 2020, 63 : 595 - 616
  • [22] Supercritical branching Brownian motion with catalytic branching at the origin
    Wang, Li
    Zong, Guowei
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (03) : 595 - 616
  • [23] Supercritical branching Brownian motion with catalytic branching at the origin
    Li Wang
    Guowei Zong
    ScienceChina(Mathematics), 2020, 63 (03) : 595 - 616
  • [24] Clusters in the critical branching Brownian motion
    Ferte, Benoit
    Le Doussal, Pierre
    Rosso, Alberto
    Cao, Xiangyu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (11)
  • [25] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [26] THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION
    Berestycki, Julien
    Berestycki, Nathanael
    Schweinsberg, Jason
    ANNALS OF PROBABILITY, 2013, 41 (02): : 527 - 618
  • [27] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [28] Critical branching Brownian motion with killing
    Lalley, Steven P.
    Zheng, Bowei
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 29
  • [29] Diffusion processes on branching Brownian motion
    Andres, Sebastian
    Hartung, Lisa
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1377 - 1400
  • [30] The fixed points of branching Brownian motion
    Xinxin Chen
    Christophe Garban
    Atul Shekhar
    Probability Theory and Related Fields, 2023, 185 : 839 - 884