The unscaled paths of branching Brownian motion

被引:5
|
作者
Harris, Simon C. [1 ]
Roberts, Matthew I. [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75013 Paris, France
基金
英国工程与自然科学研究理事会;
关键词
Branching Brownian motion; Large deviations; Survival probability; Law of large numbers; BEHAVIOR;
D O I
10.1214/11-AIHP417
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a set A subset of C[0, infinity), we give new results on the growth of the number of particles in a branching Brownian motion whose paths fall within A. We show that it is possible to work without rescaling the paths. We give large deviations probabilities as well as a more sophisticated proof of a result on growth in the number of particles along certain sets of paths. Our results reveal that the number of particles can oscillate dramatically. We also obtain new results on the number of particles near the frontier of the model. The methods used are entirely probabilistic.
引用
收藏
页码:579 / 608
页数:30
相关论文
共 50 条
  • [1] Branching Brownian Motion: Almost Sure Growth Along Scaled Paths
    Harris, Simon C.
    Roberts, Matthew I.
    [J]. SEMINAIRE DE PROBABILITES XLIV, 2012, 2046 : 375 - 399
  • [2] Annihilating Branching Brownian Motion
    Ahlberg, Daniel
    Angel, Omer
    Kolesnik, Brett
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (13) : 10425 - 10448
  • [3] Branching Brownian Motion with Catalytic Branching at the Origin
    Bocharov, Sergey
    Harris, Simon C.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 201 - 228
  • [4] Hyperbolic branching Brownian motion
    Lalley, SP
    Sellke, T
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (02) : 171 - 192
  • [5] Hyperbolic branching Brownian motion
    Steven P. Lalley
    Tom Sellke
    [J]. Probability Theory and Related Fields, 1997, 108 : 171 - 192
  • [6] Branching Brownian Motion with Catalytic Branching at the Origin
    Sergey Bocharov
    Simon C. Harris
    [J]. Acta Applicandae Mathematicae, 2014, 134 : 201 - 228
  • [7] On the density of branching Brownian motion
    Oz, Mehmet
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01): : 229 - 247
  • [8] Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift
    Berestycki, Julien
    Brunet, Eric
    Harris, Simon C.
    Milos, Piotr
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (06) : 2107 - 2143
  • [9] Supercritical branching Brownian motion with catalytic branching at the origin
    Li Wang
    Guowei Zong
    [J]. Science China Mathematics, 2020, 63 : 595 - 616
  • [10] Supercritical branching Brownian motion with catalytic branching at the origin
    Wang, Li
    Zong, Guowei
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (03) : 595 - 616