Stability analysis of the singular points and Hopf bifurcations of a tumor growth control model

被引:1
|
作者
Drexler, Daniel Andras [1 ]
Nagy, Ilona [2 ,6 ]
Romanovski, Valery G. [3 ,4 ,5 ]
机构
[1] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Budapest, Hungary
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Maribor, Slovenia
[5] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[6] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem Rkp 3, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
bifurcation; cancer therapy; limit cycle; singular point; tumor control; tumor therapy;
D O I
10.1002/mma.9885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out qualitative analysis of a fourth-order tumor growth control model using ordinary differential equations. We show that the system has one positive equilibrium point, and its stability is independent of the feedback gain. Using a Lyapunov function method, we prove that there exist realistic parameter values for which the systems admit limit cycle oscillations due to a supercritical Hopf bifurcation. The time evolution of the state variables is also represented.
引用
收藏
页码:5677 / 5691
页数:15
相关论文
共 50 条