Hopf Bifurcations and Oscillatory Patterns of a Homogeneous Reaction-Diffusion Singular Predator-Prey Model

被引:0
|
作者
Bao, Zhenhua [1 ,2 ]
Liu, He [3 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[3] Inner Mongolia Univ Sci & Technol, Sch Math Phys & Biol Engn, Baotou 014010, Peoples R China
关键词
SPATIOTEMPORAL PATTERNS; SYSTEM; EXTINCTION;
D O I
10.1155/2013/547425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A kind of homogeneous reaction-diffusion singular predator-prey model with no-flux boundary condition is considered. By using the abstract simplified Hopf bifurcation theorem due to Yi et al. 2009, we performed detailed Hopf bifurcation analysis of this particular pattern formation system. These results suggest the existence of oscillatory patterns if the system parameters fall into certain parameter ranges. And all these oscillatory patterns are proved to be unstable.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spatiotemporal Patterns Induced by Hopf Bifurcations in a Homogeneous Diffusive Predator-Prey System
    Lin, Meng
    Chai, Yanyou
    Yang, Xuguang
    Wang, Yufeng
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [2] Hopf Bifurcations in a Predator-Prey Model with an Omnivore
    Li, Yongjun
    Romanovski, Valery G.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 1201 - 1224
  • [3] Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
    Guin, Lakshmi Narayan
    Mondal, Benukar
    Chakravarty, Santabrata
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (06)
  • [4] Stability and Hopf bifurcation of a delayed reaction-diffusion predator-prey model with anti-predator behaviour
    Liu, Jia
    Zhang, Xuebing
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 387 - 406
  • [5] On a predator-prey reaction-diffusion model with nonlocal effects
    Han, Bang-Sheng
    Yang, Ying-Hui
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 46 : 49 - 61
  • [6] Turing Patterns in a Predator-Prey Reaction-Diffusion Model with Seasonality and Fear Effect
    Li, Tianyang
    Wang, Qiru
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [7] Spatial patterns through Turing instability in a reaction-diffusion predator-prey model
    Guin, Lakshmi Narayan
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 109 : 174 - 185
  • [8] BIFURCATIONS AND HYDRA EFFECTS IN A REACTION-DIFFUSION PREDATOR-PREY MODEL WITH HOLLING II FUNCTIONAL RESPONSE
    Chen, Hongyu
    Zhang, Chunrui
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 424 - 444
  • [9] Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model
    Li, Xin
    Jiang, Weihua
    Shi, Junping
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (02) : 287 - 306
  • [10] Bifurcations in a predator-prey model with diffusion and memory
    Aly, Shaban
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (06): : 1855 - 1863