Stability analysis of the singular points and Hopf bifurcations of a tumor growth control model

被引:1
|
作者
Drexler, Daniel Andras [1 ]
Nagy, Ilona [2 ,6 ]
Romanovski, Valery G. [3 ,4 ,5 ]
机构
[1] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Budapest, Hungary
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Maribor, Slovenia
[5] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[6] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem Rkp 3, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
bifurcation; cancer therapy; limit cycle; singular point; tumor control; tumor therapy;
D O I
10.1002/mma.9885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out qualitative analysis of a fourth-order tumor growth control model using ordinary differential equations. We show that the system has one positive equilibrium point, and its stability is independent of the feedback gain. Using a Lyapunov function method, we prove that there exist realistic parameter values for which the systems admit limit cycle oscillations due to a supercritical Hopf bifurcation. The time evolution of the state variables is also represented.
引用
收藏
页码:5677 / 5691
页数:15
相关论文
共 50 条
  • [41] Second-order analysis of an optimal control problem in a phase field tumor growth model with singular potentials and chemotaxis
    Colli, Pierluigi
    Signori, Andrea
    Sprekels, Juergen
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [42] Stability and Hopf Bifurcation Analysis on a Bazykin Model with Delay
    Zhang, Jianming
    Zhang, Lijun
    Khalique, Chaudry Masood
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [43] Stability and Hopf bifurcation analysis in a delay Swarms model
    Liu Feng
    Yin Xiang
    Ling Guang
    Guan Zhi-Hong
    Hua O, Wang
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1049 - 1053
  • [44] The stability and Hopf bifurcation analysis of a gene expression model
    Zhang, Tonghua
    Song, Yongli
    Zang, Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 103 - 113
  • [45] STABILITY AND HOPF BIFURCATION ANALYSIS OF A DISTRIBUTED TIME DELAY ENERGY MODEL FOR SUSTAINABLE ECONOMIC GROWTH
    Ferrara, Massimiliano
    Gangemi, Mariangela
    Guerrini, Luca
    Pansera, Bruno A.
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2020, 98 (01):
  • [46] Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior
    Tang, Xiaosong
    Song, Yongli
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 : 375 - 391
  • [47] Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling
    Song, Yongli
    Zhang, Tonghua
    Tade, Moses O.
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (06) : 597 - 632
  • [48] Biological control in a simple ecological model via subcritical Hopf and Bogdanov-Takens bifurcations
    Chan-Lopez, E.
    Castellanos, Victor
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [49] Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling
    Yongli Song
    Tonghua Zhang
    Moses O. Tadé
    Journal of Nonlinear Science, 2009, 19