Stability analysis of the singular points and Hopf bifurcations of a tumor growth control model

被引:1
|
作者
Drexler, Daniel Andras [1 ]
Nagy, Ilona [2 ,6 ]
Romanovski, Valery G. [3 ,4 ,5 ]
机构
[1] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Budapest, Hungary
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Maribor, Slovenia
[5] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[6] Budapest Univ Technol & Econ, Inst Math, Dept Anal & Operat Res, Muegyetem Rkp 3, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”;
关键词
bifurcation; cancer therapy; limit cycle; singular point; tumor control; tumor therapy;
D O I
10.1002/mma.9885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out qualitative analysis of a fourth-order tumor growth control model using ordinary differential equations. We show that the system has one positive equilibrium point, and its stability is independent of the feedback gain. Using a Lyapunov function method, we prove that there exist realistic parameter values for which the systems admit limit cycle oscillations due to a supercritical Hopf bifurcation. The time evolution of the state variables is also represented.
引用
收藏
页码:5677 / 5691
页数:15
相关论文
共 50 条
  • [1] Stability of singular Hopf bifurcations
    Yang, LJ
    Zeng, XW
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (01) : 30 - 54
  • [2] Double singularity-induced bifurcation points and singular Hopf bifurcations
    Beardmore, RE
    DYNAMICS AND STABILITY OF SYSTEMS, 2000, 15 (04): : 319 - 342
  • [3] Analysis and control of Hopf bifurcations
    Hamzi, B
    Kang, W
    Barbot, JP
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) : 2200 - 2220
  • [4] HOPF BIFURCATIONS AND THE STABILITY OF THE RESPIRATORY CONTROL-SYSTEM
    CLEAVE, JP
    LEVINE, MR
    FLEMING, PJ
    LONG, AM
    JOURNAL OF THEORETICAL BIOLOGY, 1986, 119 (03) : 299 - 318
  • [5] Stability and Hopf bifurcations in a business cycle model with delay
    Ma, Junhai
    Gao, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 829 - 834
  • [6] Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay
    Xu, Rui
    Wang, Zhili
    Zhang, Fengqin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 : 332 - 342
  • [7] A Study on Hopf Bifurcations for Power System Stability Analysis
    Jazaeri, M.
    Khatibi, M.
    2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 189 - +
  • [8] Bifurcations in a closed-loop model of tumor growth control
    Drexler, Daniel Andras
    Nagy, Ilona
    Romanovski, Valery
    21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS (CINTI), 2021, : 43 - 48
  • [9] Stability and Hopf Bifurcations of nonlinear delay malaria epidemic model
    Saker, S. H.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 784 - 799
  • [10] The stability analysis and control of Hopf bifurcation of a neuron model
    Yuan, Chun-Hua
    Wang, Jiang
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2015, 28 (01): : 52 - 58