Stability of singular Hopf bifurcations

被引:7
|
作者
Yang, LJ [1 ]
Zeng, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
singular Hopf bifurcation; singularly perturbed system; Lyapunov constant; stability constant; stability formula;
D O I
10.1016/j.jde.2004.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A stability formula is given for the singular Hopf bifurcation arising in singularly perturbed systems of the form (x)over dot = epsilonf (x, y, lambda), (y)over dot = g(x, y, lambda) in this paper. The derivation of the formula is based on a reduction technique and on an existing stability formula for Hopf bifurcation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 50 条
  • [1] Stability analysis of the singular points and Hopf bifurcations of a tumor growth control model
    Drexler, Daniel Andras
    Nagy, Ilona
    Romanovski, Valery G.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 5677 - 5691
  • [2] On the stability of HOPF bifurcations for maps
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 209 - 212
  • [3] STABILITY AND HOPF BIFURCATIONS IN AN INVERTED PENDULUM
    BLACKBURN, JA
    SMITH, HJT
    GRONBECHJENSEN, N
    AMERICAN JOURNAL OF PHYSICS, 1992, 60 (10) : 903 - 908
  • [4] Stability and Hopf bifurcations in a business cycle model with delay
    Ma, Junhai
    Gao, Qin
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (02) : 829 - 834
  • [5] A Study on Hopf Bifurcations for Power System Stability Analysis
    Jazaeri, M.
    Khatibi, M.
    2008 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE, 2008, : 189 - +
  • [6] Hopf bifurcations of ODE systems along the singular direction in the parameter plane
    Zhang, RY
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) : 445 - 461
  • [7] Double singularity-induced bifurcation points and singular Hopf bifurcations
    Beardmore, RE
    DYNAMICS AND STABILITY OF SYSTEMS, 2000, 15 (04): : 319 - 342
  • [8] HOPF BIFURCATIONS AND THE STABILITY OF THE RESPIRATORY CONTROL-SYSTEM
    CLEAVE, JP
    LEVINE, MR
    FLEMING, PJ
    LONG, AM
    JOURNAL OF THEORETICAL BIOLOGY, 1986, 119 (03) : 299 - 318
  • [9] Bifurcations and stability of a discrete singular bioeconomic system
    Xueying Wu
    Boshan Chen
    Nonlinear Dynamics, 2013, 73 : 1813 - 1828
  • [10] Bifurcations and stability of a discrete singular bioeconomic system
    Wu, Xueying
    Chen, Boshan
    NONLINEAR DYNAMICS, 2013, 73 (03) : 1813 - 1828