Stability of singular Hopf bifurcations

被引:7
|
作者
Yang, LJ [1 ]
Zeng, XW
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
singular Hopf bifurcation; singularly perturbed system; Lyapunov constant; stability constant; stability formula;
D O I
10.1016/j.jde.2004.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A stability formula is given for the singular Hopf bifurcation arising in singularly perturbed systems of the form (x)over dot = epsilonf (x, y, lambda), (y)over dot = g(x, y, lambda) in this paper. The derivation of the formula is based on a reduction technique and on an existing stability formula for Hopf bifurcation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 50 条
  • [21] Local versus global stability in dynamical systems with consecutive Hopf bifurcations
    Böttcher P.C.
    Schäfer B.
    Kettemann S.
    Agert C.
    Witthaut D.
    Physical Review Research, 2023, 5 (03):
  • [22] Stability Switches and Hopf Bifurcations in a Pair of Delay-Coupled Oscillators
    Yongli Song
    Junjie Wei
    Yuan Yuan
    Journal of Nonlinear Science, 2007, 17 : 145 - 166
  • [23] Stability and Hopf bifurcations of an optoelectronic time-delay feedback system
    Y. G. Zheng
    Z. H. Wang
    Nonlinear Dynamics, 2009, 57 : 125 - 134
  • [24] Stability and Hopf bifurcations of a three-species symbiosis model with delays
    Gao, Qin
    2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 272 - 276
  • [25] Stability and Hopf bifurcations of an optoelectronic time-delay feedback system
    Zheng, Y. G.
    Wang, Z. H.
    NONLINEAR DYNAMICS, 2009, 57 (1-2) : 125 - 134
  • [26] Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators
    Song, Yongli
    Wei, Junjie
    Yuan, Yuan
    JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (02) : 145 - 166
  • [27] Stability analysis of degenerate hopf bifurcations for discrete-time systems
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    LATIN AMERICAN APPLIED RESEARCH, 2003, 33 (04) : 413 - 418
  • [29] Feedback control of Hopf bifurcations
    Chen, GR
    Yap, KC
    Lu, JL
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B639 - B642
  • [30] HOPF BIFURCATIONS IN LANGMUIR CIRCULATIONS
    COX, SM
    LEIBOVICH, S
    MOROZ, IM
    TANDON, A
    PHYSICA D, 1992, 59 (1-3): : 226 - 254