Coloring the square of maximal planar graphs with diameter two

被引:0
|
作者
Wang, Yiqiao [1 ]
Huo, Jingjing [2 ]
Kong, Jiangxu [3 ]
Tan, Qiuyue [4 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
[2] Hebei Univ Engn, Dept Math, Handan 056038, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[4] Wuyi Univ, Dept Math & Comp, Wuyishan 354300, Peoples R China
关键词
Wegner's conjecture; Chromatic number; Maximal planar graph; Diameter; 4-CYCLES; GIRTH;
D O I
10.1016/j.amc.2023.128263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a maximal planar graph with diameter two and maximum degree Delta. Let chi (G2) denote the chromatic number of the square of... In this paper, we prove that chi(G2) = Delta + 1 if 2 <= Delta <= 3; chi(G(2)) <= 6 if Delta = 4; chi(G(2)) = 9 if Delta + 5; chi(G2) <=+ 5 if 6 <= Delta <= 7; and chi(G2) <= 3 Delta/2 + 1 if >= 8. All bounds are tight. This confirms the Wegner's conjecture for maximal planar graphs with diameter two.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [32] Injective coloring of planar graphs
    Yuehua, Bu
    Chentao, Qi
    Junlei, Zhu
    Ting, Xu
    [J]. THEORETICAL COMPUTER SCIENCE, 2021, 857 : 114 - 122
  • [33] Additive Coloring of Planar Graphs
    Tomasz Bartnicki
    Bartłomiej Bosek
    Sebastian Czerwiński
    Jarosław Grytczuk
    Grzegorz Matecki
    Wiktor Żelazny
    [J]. Graphs and Combinatorics, 2014, 30 : 1087 - 1098
  • [34] Injective coloring of planar graphs
    Bu, Yuehua
    Chen, Dong
    Raspaud, Andre
    Wang, Weifan
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 663 - 672
  • [35] Coloring powers of planar graphs
    Agnarsson, G
    Halldórsson, MM
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (04) : 651 - 662
  • [36] THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS
    Kierstead, Hal
    Mohar, Bojan
    Spacapan, Simon
    Yang, Daqing
    Zhu, Xuding
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1548 - 1560
  • [37] A Heuristic for the Coloring of Planar Graphs
    De Ita Luna, Guillermo
    Lopez-Ramirez, Cristina
    De Ita-Varela, Ana E.
    Gutierrez-Gomez, Jorge E.
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2020, 354 : 91 - 105
  • [38] Odd coloring of sparse graphs and planar graphs
    Cho, Eun-Kyung
    Choi, Ilkyoo
    Kwon, Hyemin
    Park, Boram
    [J]. DISCRETE MATHEMATICS, 2023, 346 (05)
  • [39] Weak diameter coloring of graphs on surfaces
    Dvorak, Zdenek
    Norin, Sergey
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 121
  • [40] STAR COLORING AND ACYCLIC COLORING OF LOCALLY PLANAR GRAPHS
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 56 - 71