THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS

被引:10
|
作者
Kierstead, Hal [1 ]
Mohar, Bojan [2 ]
Spacapan, Simon [3 ]
Yang, Daqing [4 ]
Zhu, Xuding [5 ,6 ]
机构
[1] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Univ Maribor, FME, SLO-2000 Maribor, Slovenia
[4] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[5] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[6] Natl Taiwan Univ, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
two-coloring number; degenerate coloring; planar graph; GAME; TRIANGULATIONS;
D O I
10.1137/070703697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The two-coloring number of graphs, which was originally introduced in the study of the game chromatic number, also gives an upper bound on the degenerate chromatic number as introduced by Borodin. It is proved that the two-coloring number of any planar graph is at most nine. As a consequence, the degenerate list chromatic number of any planar graph is at most nine. It is also shown that the degenerate diagonal chromatic number is at most 11 and the degenerate diagonal list chromatic number is at most 12 for all planar graphs.
引用
收藏
页码:1548 / 1560
页数:13
相关论文
共 50 条
  • [1] Planar graphs have two-coloring number at most 8
    Dvorak, Zdenek
    Kabela, Adam
    Kaiser, Tomas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 144 - 157
  • [2] Relaxed two-coloring of cubic graphs
    Berke, Robert
    Szabo, Tibor
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (04) : 652 - 668
  • [3] The game coloring number of planar graphs
    Zhu, XD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 245 - 258
  • [4] The number of colorings of planar graphs with no separating triangles
    Thomassen, Carsten
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 615 - 633
  • [5] Two-coloring random hypergraphs
    Achlioptas, D
    Kim, JH
    Krivelevich, M
    Tetali, P
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (02) : 249 - 259
  • [6] Injective edge colorings of degenerate graphs and the oriented chromatic number
    Bradshaw, Peter
    Clow, Alexander
    Xu, Jingwei
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 127
  • [7] Delaunay quadrangulation by two-coloring vertices
    Mitchell, Scott A.
    Mohammed, Mohammed A.
    Mahmoud, Ahmed H.
    Ebeida, Mohamed S.
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 364 - 376
  • [8] Total Colorings Of Degenerate Graphs
    Shuji Isobe
    Xiao Zhou
    Takao Nishizeki
    Combinatorica, 2007, 27 : 167 - 182
  • [9] Total colorings of degenerate graphs
    Isobe, Shuji
    Zhou, Xiao
    Nishizeki, Takao
    COMBINATORICA, 2007, 27 (02) : 167 - 182
  • [10] The game coloring number of planar graphs with a given girth
    Sekiguchi, Yosuke
    DISCRETE MATHEMATICS, 2014, 330 : 11 - 16