Two-coloring random hypergraphs

被引:20
|
作者
Achlioptas, D
Kim, JH
Krivelevich, M
Tetali, P [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Microsoft Corp, Res, Redmond, WA 98052 USA
[3] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1002/rsa.997
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A 2-coloring of a hypergraph is a mapping from its vertex set to a set of two colors such that no edge is monochromatic. Let H = H(k, n, p) be a random k-uniform hypergraph on a vertex set V of cardinality n, where each k-subset of V is an edge of H with probability p, independently of all other k-subsets. Let m = p((n)(k)) denote the expected number of edges in H. Let us say that a sequence of events xi(n) holds with high probability (w.h.p.) if lim(n-->infinity) Pr[xi(n)] = 1. It is easy to show that if m = c2(k)n then w.h.p H is not 2-colorable for c > ln 2/2. We prove that there exists a constant c > 0 such that if M = (c2(k)/k)n, then w.h.p H is 2-colorable. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Delaunay quadrangulation by two-coloring vertices
    Mitchell, Scott A.
    Mohammed, Mohammed A.
    Mahmoud, Ahmed H.
    Ebeida, Mohamed S.
    23RD INTERNATIONAL MESHING ROUNDTABLE (IMR23), 2014, 82 : 364 - 376
  • [2] Relaxed two-coloring of cubic graphs
    Berke, Robert
    Szabo, Tibor
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (04) : 652 - 668
  • [3] Improved bounds and algorithms for hypergraph two-coloring
    Radhakrishnan, J
    Srinivasan, A
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 684 - 693
  • [4] THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS
    Kierstead, Hal
    Mohar, Bojan
    Spacapan, Simon
    Yang, Daqing
    Zhu, Xuding
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1548 - 1560
  • [5] A Note on Random Greedy Coloring of Uniform Hypergraphs
    Cherkashin, Danila D.
    Kozik, Jakub
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (03) : 407 - 413
  • [6] Planar graphs have two-coloring number at most 8
    Dvorak, Zdenek
    Kabela, Adam
    Kaiser, Tomas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 144 - 157
  • [7] Approximating Independent Set and Coloring in random uniform hypergraphs
    Plociennik, Kai
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2008, PROCEEDINGS, 2008, 5162 : 539 - 550
  • [8] Bounds on Threshold Probabilities for Coloring Properties of Random Hypergraphs
    Semenov, A. S.
    Shabanov, D. A.
    PROBLEMS OF INFORMATION TRANSMISSION, 2022, 58 (01) : 72 - 101
  • [9] Phase transitions in the q-coloring of random hypergraphs
    Gabrie, Marylou
    Dani, Varsha
    Semerjian, Guilhem
    Zdeborova, Lenka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
  • [10] Bounds on Threshold Probabilities for Coloring Properties of Random Hypergraphs
    A. S. Semenov
    D. A. Shabanov
    Problems of Information Transmission, 2022, 58 : 72 - 101