Coloring the square of maximal planar graphs with diameter two

被引:0
|
作者
Wang, Yiqiao [1 ]
Huo, Jingjing [2 ]
Kong, Jiangxu [3 ]
Tan, Qiuyue [4 ]
机构
[1] Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
[2] Hebei Univ Engn, Dept Math, Handan 056038, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[4] Wuyi Univ, Dept Math & Comp, Wuyishan 354300, Peoples R China
关键词
Wegner's conjecture; Chromatic number; Maximal planar graph; Diameter; 4-CYCLES; GIRTH;
D O I
10.1016/j.amc.2023.128263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a maximal planar graph with diameter two and maximum degree Delta. Let chi (G2) denote the chromatic number of the square of... In this paper, we prove that chi(G2) = Delta + 1 if 2 <= Delta <= 3; chi(G(2)) <= 6 if Delta = 4; chi(G(2)) = 9 if Delta + 5; chi(G2) <=+ 5 if 6 <= Delta <= 7; and chi(G2) <= 3 Delta/2 + 1 if >= 8. All bounds are tight. This confirms the Wegner's conjecture for maximal planar graphs with diameter two.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Steiner diameter of 3, 4 and 5-connected maximal planar graphs
    Ali, Patrick
    Mukwembi, Simon
    Dankelmann, Peter
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 179 : 222 - 228
  • [42] Maximal and minimal vertex-critical graphs of diameter two
    Huang, J
    Yeo, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 311 - 325
  • [43] Dynamic coloring and list dynamic coloring of planar graphs
    Kim, Seog-Jin
    Lee, Sang June
    Park, Won-Jin
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2207 - 2212
  • [44] Coloring the Square of Sierpiński Graphs
    Bing Xue
    Liancui Zuo
    Guojun Li
    [J]. Graphs and Combinatorics, 2015, 31 : 1795 - 1805
  • [45] Planar graphs have two-coloring number at most 8
    Dvorak, Zdenek
    Kabela, Adam
    Kaiser, Tomas
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 130 : 144 - 157
  • [46] Complexity of two coloring problems in cubic planar bipartite mixed graphs
    Ries, B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (05) : 592 - 596
  • [47] THE PERFORMANCE OF ALGORITHMS FOR COLORING PLANAR GRAPHS
    WILLIAMS, MH
    MILNE, KT
    [J]. COMPUTER JOURNAL, 1984, 27 (02): : 165 - 170
  • [48] EQUITABLE COLORING OF SPARSE PLANAR GRAPHS
    Luo, Rong
    Sereni, Jean-Sebastien
    Stephens, D. Christopher
    Yu, Gexin
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (04) : 1572 - 1583
  • [49] COLORING PLANAR PERFECT GRAPHS BY DECOMPOSITION
    HSU, WL
    [J]. COMBINATORICA, 1986, 6 (04) : 381 - 385
  • [50] A result on linear coloring of planar graphs
    Cai, Chunli
    Xie, Dezheng
    Yang, Wenjuan
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 880 - 884