Tunable topologically driven Fermi arc van Hove singularities

被引:7
|
作者
Sanchez, Daniel S. S. [1 ,2 ]
Cochran, Tyler A. A. [1 ]
Belopolski, Ilya [1 ,3 ]
Cheng, Zi-Jia [1 ]
Yang, Xian P. [1 ]
Liu, Yiyuan [4 ]
Hou, Tao [5 ]
Xu, Xitong [4 ]
Manna, Kaustuv [6 ,7 ]
Shekhar, Chandra [6 ]
Yin, Jia-Xin [1 ]
Borrmann, Horst [6 ]
Chikina, Alla [8 ]
Denlinger, Jonathan D. D. [9 ]
Strocov, Vladimir N. N. [8 ]
Xie, Weiwei [10 ]
Felser, Claudia [6 ]
Jia, Shuang [4 ]
Chang, Guoqing [5 ]
Hasan, M. Zahid [1 ,11 ,12 ]
机构
[1] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, Copenhagen, Denmark
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Japan
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore, Singapore
[6] Max Planck Inst Chem Phys Solids, Dresden, Germany
[7] Indian Inst Technol Delhi, Dept Phys, Hauz Khas, India
[8] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[10] Michigan State Univ, Dept Chem, E Lansing, MI USA
[11] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[12] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; PHASE; SUPERCONDUCTIVITY; PHYSICS;
D O I
10.1038/s41567-022-01892-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classification scheme of electronic phases uses two prominent paradigms: correlations and topology. Electron correlations give rise to superconductivity and charge density waves, while the quantum geometric Berry phase gives rise to electronic topology. The intersection of these two paradigms has initiated an effort to discover electronic instabilities at or near the Fermi level of topological materials. Here we identify the electronic topology of chiral fermions as the driving mechanism for creating van Hove singularities that host electronic instabilities in the surface band structure. We observe that the chiral fermion conductors RhSi and CoSi possess two types of helicoid arc van Hove singularities that we call type I and type II. In RhSi, the type I variety drives a switching of the connectivity of the helicoid arcs at different energies. In CoSi, we measure a type II intra-helicoid arc van Hove singularity near the Fermi level. Chemical engineering methods are able to tune the energy of these singularities. Finally, electronic susceptibility calculations allow us to visualize the dominant Fermi surface nesting vectors of the helicoid arc singularities, consistent with recent observations of surface charge density wave ordering in CoSi. This suggests a connection between helicoid arc singularities and surface charge density waves. Strong correlations between electrons in topological surface states drive the formation of surface van Hove singularities. These may be linked to charge density waves in the surface states.
引用
收藏
页码:682 / 688
页数:18
相关论文
共 50 条
  • [1] Tunable topologically driven Fermi arc van Hove singularities
    Daniel S. Sanchez
    Tyler A. Cochran
    Ilya Belopolski
    Zi-Jia Cheng
    Xian P. Yang
    Yiyuan Liu
    Tao Hou
    Xitong Xu
    Kaustuv Manna
    Chandra Shekhar
    Jia-Xin Yin
    Horst Borrmann
    Alla Chikina
    Jonathan D. Denlinger
    Vladimir N. Strocov
    Weiwei Xie
    Claudia Felser
    Shuang Jia
    Guoqing Chang
    M. Zahid Hasan
    [J]. Nature Physics, 2023, 19 : 682 - 688
  • [2] VAN HOVE SINGULARITIES
    LITVIN, DB
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (20): : L411 - L412
  • [3] Pressure Tunable van Hove Singularities of Twisted Bilayer Graphene
    Zhang, Tao
    Gao, Chaofeng
    Liu, Dongdong
    Li, Zhuolun
    Zhang, Hao
    Zhu, Mengqi
    Zhang, Zhenxiao
    Zhao, Puqin
    Cheng, Yingchun
    Huang, Wei
    [J]. NANO LETTERS, 2022, 22 (14) : 5841 - 5848
  • [4] Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene
    Shuigang Xu
    Mohammed M. Al Ezzi
    Nilanthy Balakrishnan
    Aitor Garcia-Ruiz
    Bonnie Tsim
    Ciaran Mullan
    Julien Barrier
    Na Xin
    Benjamin A. Piot
    Takashi Taniguchi
    Kenji Watanabe
    Alexandra Carvalho
    Artem Mishchenko
    A. K. Geim
    Vladimir I. Fal’ko
    Shaffique Adam
    Antonio Helio Castro Neto
    Kostya S. Novoselov
    Yanmeng Shi
    [J]. Nature Physics, 2021, 17 : 619 - 626
  • [5] Non-Fermi-liquid signatures in the Hubbard model due to van Hove singularities
    Schmitt, Sebastian
    [J]. PHYSICAL REVIEW B, 2010, 82 (15):
  • [6] Fermi Condensation Near van Hove Singularities Within the Hubbard Model on the Triangular Lattice
    Yudin, Dmitry
    Hirschmeier, Daniel
    Hafermann, Hartmut
    Eriksson, Olle
    Lichtenstein, Alexander I.
    Katsnelson, Mikhail I.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [7] Van Hove singularities in graphene nanoflakes
    Zhou, Aiping
    Sheng, Weidong
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
  • [8] Tunable van Hove singularities and correlated states in twisted monolayer-bilayer graphene
    Xu, Shuigang
    Al Ezzi, Mohammed M.
    Balakrishnan, Nilanthy
    Garcia-Ruiz, Aitor
    Tsim, Bonnie
    Mullan, Ciaran
    Barrier, Julien
    Xin, Na
    Piot, Benjamin A.
    Taniguchi, Takashi
    Watanabe, Kenji
    Carvalho, Alexandra
    Mishchenko, Artem
    Geim, A. K.
    Fal'ko, Vladimir I.
    Adam, Shaffique
    Neto, Antonio Helio Castro
    Novoselov, Kostya S.
    Shi, Yanmeng
    [J]. NATURE PHYSICS, 2021, 17 (05) : 619 - +
  • [9] Spin–valley Hall phenomena driven by Van Hove singularities in blistered graphene
    M. Umar Farooq
    Arqum Hashmi
    Tomoya Ono
    Li Huang
    [J]. npj Computational Materials, 6
  • [10] Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES
    Jones, Alfred J. H.
    Muzzio, Ryan
    Majchrzak, Paulina
    Pakdel, Sahar
    Curcio, Davide
    Volckaert, Klara
    Biswas, Deepnarayan
    Gobbo, Jacob
    Singh, Simranjeet
    Robinson, Jeremy T.
    Watanabe, Kenji
    Taniguchi, Takashi
    Kim, Timur K.
    Cacho, Cephise
    Lanata, Nicola
    Miwa, Jill A.
    Hofmann, Philip
    Katoch, Jyoti
    Ulstrup, Soren
    [J]. ADVANCED MATERIALS, 2020, 32 (31)