Tunable topologically driven Fermi arc van Hove singularities

被引:7
|
作者
Sanchez, Daniel S. S. [1 ,2 ]
Cochran, Tyler A. A. [1 ]
Belopolski, Ilya [1 ,3 ]
Cheng, Zi-Jia [1 ]
Yang, Xian P. [1 ]
Liu, Yiyuan [4 ]
Hou, Tao [5 ]
Xu, Xitong [4 ]
Manna, Kaustuv [6 ,7 ]
Shekhar, Chandra [6 ]
Yin, Jia-Xin [1 ]
Borrmann, Horst [6 ]
Chikina, Alla [8 ]
Denlinger, Jonathan D. D. [9 ]
Strocov, Vladimir N. N. [8 ]
Xie, Weiwei [10 ]
Felser, Claudia [6 ]
Jia, Shuang [4 ]
Chang, Guoqing [5 ]
Hasan, M. Zahid [1 ,11 ,12 ]
机构
[1] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, Copenhagen, Denmark
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Japan
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore, Singapore
[6] Max Planck Inst Chem Phys Solids, Dresden, Germany
[7] Indian Inst Technol Delhi, Dept Phys, Hauz Khas, India
[8] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[10] Michigan State Univ, Dept Chem, E Lansing, MI USA
[11] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[12] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; PHASE; SUPERCONDUCTIVITY; PHYSICS;
D O I
10.1038/s41567-022-01892-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classification scheme of electronic phases uses two prominent paradigms: correlations and topology. Electron correlations give rise to superconductivity and charge density waves, while the quantum geometric Berry phase gives rise to electronic topology. The intersection of these two paradigms has initiated an effort to discover electronic instabilities at or near the Fermi level of topological materials. Here we identify the electronic topology of chiral fermions as the driving mechanism for creating van Hove singularities that host electronic instabilities in the surface band structure. We observe that the chiral fermion conductors RhSi and CoSi possess two types of helicoid arc van Hove singularities that we call type I and type II. In RhSi, the type I variety drives a switching of the connectivity of the helicoid arcs at different energies. In CoSi, we measure a type II intra-helicoid arc van Hove singularity near the Fermi level. Chemical engineering methods are able to tune the energy of these singularities. Finally, electronic susceptibility calculations allow us to visualize the dominant Fermi surface nesting vectors of the helicoid arc singularities, consistent with recent observations of surface charge density wave ordering in CoSi. This suggests a connection between helicoid arc singularities and surface charge density waves. Strong correlations between electrons in topological surface states drive the formation of surface van Hove singularities. These may be linked to charge density waves in the surface states.
引用
收藏
页码:682 / 688
页数:18
相关论文
共 50 条
  • [21] Fermi gas on a lattice in the van Hove limit
    Ho, TG
    Landau, LJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (3-4) : 821 - 845
  • [22] Observation of a van Hove singularity of a surface Fermi arc with prominent coupling to phonons in a Weyl semimetal
    Wang, Zhenyu
    Huang, Cheng-Yi
    Hsu, Chia-Hsiu
    Namiki, Hiromasa
    Chang, Tay-Rong
    Chuang, Feng-Chuan
    Lin, Hsin
    Sasagawa, Takao
    Madhavan, Vidya
    Okada, Yoshinori
    [J]. PHYSICAL REVIEW B, 2022, 105 (07)
  • [23] Violation of the Fermi-liquid picture in two-dimensional systems owing to Van Hove singularities
    Irkhin, VY
    Katanin, AA
    [J]. PHYSICAL REVIEW B, 2001, 64 (20)
  • [24] The Kondo-lattice state and non-Fermi-liquid behavior in the presence of Van Hove singularities
    Irkhin, V. Yu
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (06)
  • [25] The search for superconductivity at van Hove singularities in carbon nanotubes
    Yang, Yanfei
    Fedorov, Georgy
    Zhang, Jian
    Tselev, Alexander
    Shafranjuk, Serhii
    Barbara, Paola
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2012, 25 (12):
  • [26] Observation of Van Hove singularities in twisted graphene layers
    Li G.
    Luican A.
    Lopes Dos Santos J.M.B.
    Castro Neto A.H.
    Reina A.
    Kong J.
    Andrei E.Y.
    [J]. Nature Physics, 2010, 6 (2) : 109 - 113
  • [27] IMPACT IONIZATION THRESHOLDS AS GENERALIZATIONS OF VAN HOVE SINGULARITIES
    LANDSBERG, PT
    ROBBINS, DJ
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1977, 10 (14): : 2717 - 2739
  • [28] Van Hove singularities in the quark-gluon plasma
    Thoma, MH
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 92 : 162 - 170
  • [29] Observation of van Hove Singularities in Twisted Silicene Multilayers
    Li, Zhi
    Zhuang, Jincheng
    Chen, Lan
    Ni, Zhenyi
    Liu, Chen
    Wang, Li
    Xu, Xun
    Wang, Jiaou
    Pi, Xiaodong
    Wang, Xiaolin
    Du, Yi
    Wu, Kehui
    Dou, Shi Xue
    [J]. ACS CENTRAL SCIENCE, 2016, 2 (08) : 517 - 521
  • [30] Interferometric measurement of Van Hove singularities in strained graphene
    Entezar, Samad Roshan
    [J]. APPLIED OPTICS, 2020, 59 (16) : 4757 - 4762